The problem of face recognition is discussed. The main methods of recognition are considered. The calibrated stereo pair for the face and calculating the depth map by the correlation algorithm are used. As a result, a 3D mask of the face is obtained. Using three anthropomorphic points, then constructed a coordinate system that ensures a possibility of superposition of the tested mask.


methods of recognition stereo pair; depth map; correlation algorithm; perturbation functions; operation of subtraction

Amann M. C., Bosch T. M., Lescure M., Myllylae R. A., Rioux M.:Laser ranging: a critical review of unusual techniques for distance measurement. Optical Engineering 40(1)/2001, 10–19, [http://doi.org/10.1117/1.1330700]. DOI: https://doi.org/10.1117/1.1330700

Belhumeur P. N., Hespanha J. P., Kriegman D. J.: Eigen faces vs. Fisher faces: Recognition using Class Specific Linear Projection. IEEE Transactions on pattern analysis and machine intelligence 19(7)/1997, 711–720, [http://doi.org/10.1109/34.598228]. DOI: https://doi.org/10.1109/34.598228

Butime J., Gutierrez I., GaloCorzo L., Flores C.: Espronceda. 3D reconstruction methods, a survey. Proceedings of the First International Conference on Computer Vision Theory and Applications, 2006, 457–463, [http://doi.org/0.5220/0001369704570463].

Chien C. H., Aggarwal J. K.: Identification of 3D Objects from Multiple Silhouettes Using Quadtrees / Octrees. Computer Vision Graphics And Image Processing 36(2–3)/1986, 256–273. DOI: https://doi.org/10.1016/0734-189X(86)90078-2

Edwards G. J., Cootes T. F., Taylor C. J.: Face recognition using active appearance models. European Conference on Computer Vision, 1998, 581-595. [http://doi.org/10.1007/BFb0054766]. DOI: https://doi.org/10.1007/BFb0054766

Jecić S., Drvar N.: 3D Shape Measurement Influencing Factors. NDT – Competence & Safety, Zagreb 2004, 109–116.

Jolliffe I. T.: Principal component analysis, second edition. Springer, New York 2002.

Lades M., Vorbruggen J.C., Buhmann J., et al.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Transactions on Computers 42(3)/1993 300–311, [http://doi.org/10.1109/12.210173]. DOI: https://doi.org/10.1109/12.210173

Lawrence S., Giles C.L., et al.: Back. Face Recognition: A Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks 8(1)/1997, 98–113, [http://doi.org/10.1109/72.554195]. DOI: https://doi.org/10.1109/72.554195

Lipton L.: Foundations of the Stereoscopic Cinema – A Study in Depth. Van Nostrand Reinhold, New York 1982.

Martin W. N., Aggarwal J. K.: Volumetric Descriptions of Objects from Multiple Views. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2)/1983, 150–158. DOI: https://doi.org/10.1109/TPAMI.1983.4767367

Nefian A. V.: A hidden Markov model-based approach for face detection and recognition. A Proposal for a Doctoral Dissertation. Georgia Institute of Technology 1998.

Niem W.: Robust and Fast Modeling of 3D Natural Objects from Multiple Views. Proceedings Image and Video Processing II 2182/1994, 388–397. DOI: https://doi.org/10.1117/12.171088

Prabhu U., Seshadri K.: Facial Recognition Using Active Shape Models, Local Patches and Support Vector Machines, 2009.

Reutebuch S. E., Andersen H., Mcgaughey R. J., Forest L.: Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple Resource Inventory. J. For. 103(6)/2005, 286–292.

Siudak M., Rokita P.: A survey of passive 3D reconstruction methods on the basis of more than one image. Machine Graphics & Vision 23(3/4)/2014, 57–11.

Szeliski R.: Shape from rotation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'91), 1991, 625–630.

Taigman Y., Yang M., et al.: Deep Face: Closing the gap to human level performance in face verification. IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1701–1708. DOI: https://doi.org/10.1109/CVPR.2014.220

Vedula S., Rander P., Saito H., Kanade T.: Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences. Proc. 4th Conference on Virtual Systems and Multimedia (VSMM98), 1998, 326–332.

Vyatkin S. I., Romanyuk A. N., Gotra Z. Y., et al.: Offsetting, relations and blending with perturbation functions. Proc. of SPIE 10445/2017, 104452B. DOI: https://doi.org/10.1117/12.2280983

Vyatkin S. I., Romanyuk S. A., Pavlov S. V., Necheporyk M. L.: Face Identification Algorithms and its using. Modern Engineering and Innovative Technologies 5/2018, 111–115.

Vyatkin S. I.: Complex surface modeling using perturbation functions. Optoelectronics, instrumentation and data processing 43/2007, 226–231. DOI: https://doi.org/10.3103/S875669900703003X

Vyatkin S. I.: Method of face recognition using of scalar perturbation functions and set-theoretic operation of subtraction. Optoelectronics, instrumentation and data processing 52(1)/2016, 1–7. DOI: https://doi.org/10.3103/S8756699016010076

Wiskott L., Fellous J. M., Kruger N., et al.: Face Recognition by Elastic Bunch Graph Matching. Proc. of International Conference on Image Processing 1/1997, 129–132, [http://doi.org/10.1109/ICIP.1997.647401]. DOI: https://doi.org/10.1109/ICIP.1997.647401

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, London 2019. DOI: https://doi.org/10.1201/9780429057618

Rawal R., Yadav V., Sharma S.: Radar – a brief study. International Journal of Innovative Research and Technology 1(12)/2015, 1017–1020.


Published : 2020-03-30

Romanyuk, O. N., Vyatkin, S. I., Pavlov, S. V., Mykhaylov, P. I., Chekhmestruk, R. Y., & Perun, I. V. (2020). FACE RECOGNITION TECHNIQUES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(1), 52-57. https://doi.org/10.35784/iapgos.922

Olexandr N. Romanyuk 
Vinnitsa National Technical University  Ukraine
Sergey I. Vyatkin 
Institute of Automation and Electrometry SB RAS, Novosibirsk  Russian Federation
Sergii V. Pavlov  psv@vntu.edu.ua
Vinnitsa National Technical University  Ukraine
Pavlo I. Mykhaylov 
3D GNERATION GmbH, Dortmund  Germany
Roman Y. Chekhmestruk 
3D GENERATION UA, Vinnitsa  Ukraine
Ivan V. Perun 
3D GENERATION UA, Vinnitsa  Ukraine