TOPOLOGICAL DERIVATIVE - THEORY AND APPLICATIONS
Katarzyna Szulc
Katarzyna.Szulc@ibspan.waw.plPolish Academy of Sciences, Systems Research Institute (Poland)
Abstract
The paper is devoted to present some mathematical aspects of the topological derivative and its applications in different fields of sciences such as shape optimization and inverse problems. First the definition of the topological derivative is given and the shape optimization problem is formulated. Next the form of the topological derivative is evaluated for a mixed boundary value problem defined in a geometrical domain. Finally, an example of an application of the topological derivative in the electric impedance tomography is presented.
Keywords:
Topological derivative, shape optimization, electrical impedance tomographyReferences
Belaid L.J., Jaoua M., Masmoudi M., Siala L.: Application of the topological gradient to image restoration and edge detection, Engineering Analysis with Boundary Element 32(11), 2008, 891-899.
Google Scholar
Fulmanski P., Lauraine A., Scheid J.-F., Sokołowski J.: A level set method in shape and topology optimization for variational inequalities, Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 3, 413-430.
Google Scholar
Hintermüller M., Laurain A.: Electrical inpedance tomography: from topology to shape, Control and Cybernetics 37(4), 2008, 913-933.
Google Scholar
Hintermüller M., Laurain A., Novotny A.A.: Second-order topological expansion for electrical impedance tomography, Advances in Computational Mathematics, February 2012, Vol. 36, Issue 2, 235-265.
Google Scholar
Iguernane M., Nazarov S.A., Roche J.-R., Sokolowski J., Szulc K.: Topological derivatives for semilinear elliptic equations, Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 2, 191-205.
Google Scholar
Leugering G., Sokołowski J.: Topological derivative for elliptic problems on graphs, Control and Cybernetics 37, 2008, 917-998.
Google Scholar
Mazja V.G., Nazarov S.A., Plomenevskii B.A.: Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Basel: Birkhäuser Verlag, 2000.
Google Scholar
Nazarov S. A.: The damage tensor and measures. 1. Asymptotic analysis of anisotropic media with defects, Mekh. Tverd. Tela, Vol. 3, 2000, 113–124, in Russian; English transl.: Mech. Solids 35, Vol. 3, 2000, 96–105.
Google Scholar
Nazarov S.A., Sokołowski J.: Asymptotic analysis of shape functionals, Journal de Mathématiques pures et appliquées, 2003, Vol. 82, 125-196.
Google Scholar
Nazarov S.A., Sokołowski J.: Self-adjoint Extensions for the Neumann Laplacian and Applications, Acta Math. Sin. (Engl. Ser.), 2006, Vol. 22, No. 3, 879-906.
Google Scholar
Novotny A. A., Sokołowski J.: Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics, Springer, 2013.
Google Scholar
Sokołowski J., Zolésio J.-P.: Introduction to shape optimization. Shape sensitivity analysis. Springer-Verlag, 1992, New York.
Google Scholar
Sokołowski J., Zochowski A.: On topological derivative in shape optimization, SIAM Journal on Control and Optimization, 1999, Vol. 37, No. 4, 1251-1272.
Google Scholar
Sokołowski J., Zochowski A.: Topological derivatives of shape functionals for elasticity systems, Mechanics of Structures and Machines, 2001, Vol. 29, 333-351.
Google Scholar
Sokołowski J., Zochowski A.: Modeling of Topological Derivatives for Contact Problems, Numerische Mathematik, 2003, Vol. 102, No. 1, 145-179.
Google Scholar
Szulc K.: Quelques méthode numérique en optimisation de formes, Ph.D. Thesis, 2010.
Google Scholar
Authors
Katarzyna SzulcKatarzyna.Szulc@ibspan.waw.pl
Polish Academy of Sciences, Systems Research Institute Poland
Statistics
Abstract views: 225PDF downloads: 47
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.