TOPOLOGICAL DERIVATIVE - THEORY AND APPLICATIONS

Katarzyna Szulc

Katarzyna.Szulc@ibspan.waw.pl
Polish Academy of Sciences, Systems Research Institute (Poland)

Abstract

The paper is devoted to present some mathematical aspects of the topological derivative and its applications in different fields of sciences such as shape optimization and inverse problems. First the definition of the topological derivative is given and the shape optimization problem is formulated. Next the form of the topological derivative is evaluated for a mixed boundary value problem defined in a geometrical domain. Finally, an example of an application of the topological derivative in the electric impedance tomography is presented.


Keywords:

Topological derivative, shape optimization, electrical impedance tomography

Belaid L.J., Jaoua M., Masmoudi M., Siala L.: Application of the topological gradient to image restoration and edge detection, Engineering Analysis with Boundary Element 32(11), 2008, 891-899.
  Google Scholar

Fulmanski P., Lauraine A., Scheid J.-F., Sokołowski J.: A level set method in shape and topology optimization for variational inequalities, Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 3, 413-430.
  Google Scholar

Hintermüller M., Laurain A.: Electrical inpedance tomography: from topology to shape, Control and Cybernetics 37(4), 2008, 913-933.
  Google Scholar

Hintermüller M., Laurain A., Novotny A.A.: Second-order topological expansion for electrical impedance tomography, Advances in Computational Mathematics, February 2012, Vol. 36, Issue 2, 235-265.
  Google Scholar

Iguernane M., Nazarov S.A., Roche J.-R., Sokolowski J., Szulc K.: Topological derivatives for semilinear elliptic equations, Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 2, 191-205.
  Google Scholar

Leugering G., Sokołowski J.: Topological derivative for elliptic problems on graphs, Control and Cybernetics 37, 2008, 917-998.
  Google Scholar

Mazja V.G., Nazarov S.A., Plomenevskii B.A.: Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Basel: Birkhäuser Verlag, 2000.
  Google Scholar

Nazarov S. A.: The damage tensor and measures. 1. Asymptotic analysis of anisotropic media with defects, Mekh. Tverd. Tela, Vol. 3, 2000, 113–124, in Russian; English transl.: Mech. Solids 35, Vol. 3, 2000, 96–105.
  Google Scholar

Nazarov S.A., Sokołowski J.: Asymptotic analysis of shape functionals, Journal de Mathématiques pures et appliquées, 2003, Vol. 82, 125-196.
  Google Scholar

Nazarov S.A., Sokołowski J.: Self-adjoint Extensions for the Neumann Laplacian and Applications, Acta Math. Sin. (Engl. Ser.), 2006, Vol. 22, No. 3, 879-906.
  Google Scholar

Novotny A. A., Sokołowski J.: Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics, Springer, 2013.
  Google Scholar

Sokołowski J., Zolésio J.-P.: Introduction to shape optimization. Shape sensitivity analysis. Springer-Verlag, 1992, New York.
  Google Scholar

Sokołowski J., Zochowski A.: On topological derivative in shape optimization, SIAM Journal on Control and Optimization, 1999, Vol. 37, No. 4, 1251-1272.
  Google Scholar

Sokołowski J., Zochowski A.: Topological derivatives of shape functionals for elasticity systems, Mechanics of Structures and Machines, 2001, Vol. 29, 333-351.
  Google Scholar

Sokołowski J., Zochowski A.: Modeling of Topological Derivatives for Contact Problems, Numerische Mathematik, 2003, Vol. 102, No. 1, 145-179.
  Google Scholar

Szulc K.: Quelques méthode numérique en optimisation de formes, Ph.D. Thesis, 2010.
  Google Scholar


Published
2015-03-31

Cited by

Szulc, K. (2015). TOPOLOGICAL DERIVATIVE - THEORY AND APPLICATIONS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(1), 7–13. https://doi.org/10.5604/20830157.1148040

Authors

Katarzyna Szulc 
Katarzyna.Szulc@ibspan.waw.pl
Polish Academy of Sciences, Systems Research Institute Poland

Statistics

Abstract views: 208
PDF downloads: 46