AN INTERVAL TYPE-2 FUZZY SYSTEMS IN THE MANAGEMENT OF EMISSIONS OF NITROGEN OXIDES


Abstract

This article is a continuation of research on the possibilities of applications of fuzzy systems and fuzzy systems of higher order to control the air filters. The article presents the author’s fuzzy implications and use of them in the interval type 2 fuzzy controller. Variable inputs which are the concentration’s levels of nitrogen oxides described by linguistic variables, interval type 2 fuzzy sets using the rules of the type IF-THEN controller calculates the filter settings. The results are highly correlated to a data provided by the expert.


Keywords

fuzzy controller; fuzzy logic; interval fuzzy sets; interval fuzzy sets of type 2

Arshdeep Kaur A.K.: Comparison of Mamdani-Type and Sugeno-Type Fuzzy Inference Systems for Air Conditioning System International Journal of Soft Computing and Engineering, 2, 2012, 323-325.

Cheng Y.-T., Chung M.-T.: A New Measurement Method on Correlation Coefficient for Attribute Fuzzy Interval Data and Its Applications InternatIonal Journal of IntellIgent technologIes and applIed statistics, Vol. 7, 2014, no. 1, 27-36.

Christian R.A., Lad R.K., Deshpande A.W., Desai N.G.: Fuzzy MCDM approach for addressing composite index of water and air pollution potential of industries International Journal of Digital Content Technology and its Applications, 1, 2008, 4-71.

Cirstea M.N.: Neural and fuzzy logic control of drives and power systems Newnes, 2002.

Mamdani E.H., Assilian S.: An experiment in linguistic synthesis with a fuzzy logic controller International Journal of Man-Machine Studies, 7, 1975, 1-13.

Fodor J.C.: Contrapositive symmetry of fuzzy implications Fuzzy Sets and Systems, 1995.

Fodor J.C.: On fuzzy implication Fuzzy Sets and Systems, 42, 1991, 293-300.

Habdank-Wojewódzki S.: Zaawansowany regulator rozmyty w zastosowaniach do ruchu drogowego, winntbg.bg.agh.edu.pl/rozprawy/9931/full9931.pdf, Krakow, 2009.

Hao Ying, Yongsheng Ding, Shaokuan Li, Shihuang Shao: Comparison of Necessary Conditions for Typical Takagi–Sugeno and Mamdani Fuzzy Systems as Universal Approximators IEEE Transactions on Systems, Man, and Cybernetics, 29, 1999, 508-514.

Hao Ying, Yongsheng Ding, Shaokuan Li, Shihuang Shao: Typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators: necessary conditions and comparison IEEE Conference Publications, 1, 1998, 824-828.

Harald König L.L.: An Advanced Inference Strategy for Fuzzy Control Based on a New Fuzzy Implication Function Fuzzy Systems, 2,1996, 1296-1302.

Jantzen J.: Fundations of Fuzzy Control John Wiley & Sons Ltd., England, 2007.

Kacprowicz M., Niewiadomski A., Cader A., Yatsymirskyy M., Przybyszewski K. (Eds.): Managing Data on Air Pollution Using Fuzzy Controller Computer Methods in Practice, Exit Publishing House, Warsaw, Poland, 2012, 46-57.

Karnik N.N., Mendel J.M.: Centroid of a type-2 fuzzy set Information Sciences, 132, 2001, 195-220.

Kuropka J.: Badania redukcji tlenków azotu amoniakiem na katalizatorach ziarnistych, Ochrona Środowiska, 2(53), 1994, 15-18.

Leski J.: Systemy Neuronowo-Rozmyte, Scientific and Technical Publishing, Warsaw, 2008.

Liang Q, Mendel J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design IEEE Transactions on Fuzzy Systems, 8, 2000, 535-550.

Wang L.-X., Mendel J.M.: Generating Fuzzy Rules by Learning from Examples IEEE Transactions on Fuzzy Systems, 22, 1992, 1414-1427.

Majumder D., Dwijesh K.: Fuzzy logic and its application in technology and management Narosa, 2007.

Mendel J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions Prentice Hall, 2001.

Niewiadomski A.: Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions Academic Publishing House, Warsaw, 2008.

Rutkowska D.: Neuro-Fuzzy Architectures and Hybrid Learning Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York, 2002.

Rutkowska D., Pilinski M., Rutkowski L.: Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa-Łódz, 1997.

Rutkowski L.: Metody i techniki sztucznej inteligencji, PWN, Warszawa, 2009.

Starczewski J.T., Montseny E., Sobrevilla P. (Eds.): Extended Triangular Norms on Gaussian Fuzzy Sets. EUSFLAT Conf., Universidad Polytecnica de Catalunya, 2005, 872-877.

Starczewski J.T.: On Defuzzification of Interval Type-2 Fuzzy Sets Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing, Springer-Verlag, 2008, 333-340.

Starczewski J.T.: A Triangular Type-2 Fuzzy Logic System IEEE International Conference on Fuzzy Systems, IEEE International Conference on Fuzzy Systems, 2006, 1460-1467.

Tomsovic K.: Fuzzy Systems Applications to Power Systems 2000.

Wierzchon S.T.: Elementy teorii zbiorów rozmytych, www.ipipan.waw.pl/~stw/esi/sterowniki.pdf, 2009.

Wu H., Jerry M.: Mendel Uncertainty Bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems IEEE Transactions on Fuzzy Systems, 2002, 10, 622-639.

Zadeh L.A.: The concept of a linguistic variable and its application to approximate reasoning Inform, 8, 1975, 199-249.


Published : 2015-03-31


Kacprowicz, M. (2015). AN INTERVAL TYPE-2 FUZZY SYSTEMS IN THE MANAGEMENT OF EMISSIONS OF NITROGEN OXIDES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(1), 20-23. https://doi.org/10.5604/20830157.1148042

Marcin Kacprowicz  marcin.kacprowicz@gmail.com
Politechnika Łódzka, Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej, Państwowa Wyższa Szkoła Zawodowa we Włocławku, Instytut Nauk Społecznych i Technicznych  Poland