MANUFACTURING PLANNING AND CONTROL SYSTEM USING TOMOGRAPHIC SENSORS
Konrad Niderla
konrad.niderla@netrix.com.plResearch and Development Center, Netrix S.A., Lublin (Poland)
Tomasz Rymarczyk
1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin (Poland)
Jan Sikora
Research and Development Center, Netrix S.A., Lublin (Poland)
Abstract
The article presents an idea of a production process control system. Advanced automation and control of production processes play a key role in maintaining competitiveness. The proposed solution consists of sensor networks for measurement process parameters, production resources and equipment state. The system uses wired and wireless communication, which gives possibility to acquisition data from existing in enterprise sensors and systems as well as acquisition data from new systems and sensors used to measure all processes, starting from production preparation to the final product. The solution contains process tomography sensors based on electrical capacitance tomography, electrical impedance tomography and ultrasound tomography. The use of tomographic methods enables to manage the intelligent structure of the companies in terms of processes and products. Industrial tomography enables observation of physical and chemical phenomena without the need to penetrate inside. It will enable the optimization and auto-optimization of design processes and production. Such solutions can operate autonomously, monitor and control measurements. All sensors return to the system continuous data about state of processes in some technologically closed objects like fermenters. Process tomography can also be used to acquisition data about a flow of liquids and loose ingredients in pipeline based on transport systems. Data acquired from sensors are collected in data warehouses in order to future processing and building the knowledge base. The results of the data analysis are showed in user control panels and are used directly in the control of the production process to increase the efficiency and quality of the products. Control methods cover issues related to the processing of data obtained from various sensors located at nodes. Monitoring takes place within the scope of acquired and processed data and parameter automation.
Keywords:
process tomography, manufacturing execution system, production control systemReferences
Baker A.D.: A Survey of Factory Control Algorithms which Can be Implemented in a Multi-Agent Heterarchy: Dispatching, Scheduling, and Pull. Journal of Manufacturing Systems 1998.
Google Scholar
Barkmeyer E., Denno P., Feng S., Jones A., Wallace E.: NIST Response to MES Request for Information. National Institute of Standard, Gaithersburg 1999.
Google Scholar
Christensson P.: Web Service Definition. https://techterms.com. https://techterms.com/definition/web_service [23.02.2018].
Google Scholar
Consulting, Burleson. Oracle history. http://www.dba-oracle.com/t_history_oracle.htm [14.02.2018].
Google Scholar
ECMA. The JSON Data Interchange Syntax. s.l. : ecma-international.org, 2017.
Google Scholar
Elragal A., Haddara M.: The Future of ERP Systems: look backward before moving. Procedia Technology 5/2012.
Google Scholar
Fletcher M., Garcia-Herreros E., Christensen J.H., Deen S.M., Mittmann R.: An Open Architecture for Holonic Cooperation and Autonomy.
Google Scholar
Giret A., Botti V.: Holons and Agents. Journal of intelligent manufacturing 15/2004.
Google Scholar
International Business Machines Corporation (IBM), Eurotech. MQTT v3.1 Protocol Specification. s.l. : mqtt.org, 2014.
Google Scholar
Jacobs F.R., Weston Jr Ted F.C.: Enterprise resource planning (ERP)–A brief history. Journal of Operations Managem.. 25/2007.
Google Scholar
Kletti J., Deisenroth R.: MES Compendium: Perfect MES Solutions based on HYDRA. Springer, 2012.
Google Scholar
Kłosowski G., Gola A.: Risk-based estimation of manufacturing order costs with artificial intelligence. Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, IEEE, 2016, 729–732.
Google Scholar
Leitão P., Colombo A.W.: Petri net based Methodology for the Development of Collaborative Production Systems l. IEEE, 2006.
Google Scholar
Leitao P.: Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence 22/2009.
Google Scholar
Mazurkiewicz D.: Maintenance of belt conveyors using an expert system based on fuzzy logic. Archives of Civil and Mechanical Engineering 15(2)/2015, 412–418.
Google Scholar
MESA. Enterprise-Control System Integration Part 1: Models and Terminology. MESA, 2000.
Google Scholar
Meyer H., Fuchs F., Thiel K.: Manufacturing Execution Systems. Optimal Design, Planning, and Deployment. McGraw-Hill, 2009.
Google Scholar
NAMUR. Functions and Examples of Operations Control Level Solutions. Technical report. Normenarbeitsgemeinschaft für Meß- und Regeltechnik in. 2003.
Google Scholar
Polakowski K., Filipowicz S., Sikora J., Rymarczyk T.: Tomography Technology Application for Workflows of Gases Monitoring in The Automotive Systems. Przegląd Elektrotechniczny 84(12)/2008, 227–229.
Google Scholar
Polakowski K., Filipowicz S.F., Sikora J., Rymarczyk T.: Quality of imaging in multipath tomography. Przeglad Elektrotechniczny 85(12)/2009, 134–136.
Google Scholar
Rouse M.: Microservices. http://searchmicroservices. techtarget.com. http://searchmicroservices.techtarget.com/definition/microservices [23.02.2018].
Google Scholar
Rymarczyk T., Filipowicz S., Sikora J., Polakowski K.: A piecewise-constant minimal partition problem in the image reconstruction. Przegląd Elektrotechniczny 85(12)/2009, 141–143.
Google Scholar
Rymarczyk T., Sikora J., Waleska B.: Coupled Boundary Element Method and Level Set Function for Solving Inverse Problem in EIT. 7th World Congress on Industrial Process Tomography, WCIPT7 2013, 312–319.
Google Scholar
SAP https://www.sap.com/corporate/en/company/history.html [14.02.2018].
Google Scholar
Schmidt A., Otto B., Österle H.: A Functional Reference Model for Manufacturing Execution Systems in the Automotive Industry. Wirtschaftinformatik Proceedings 89/2011.
Google Scholar
Smolik W., Radomski D.: Performance evaluation of the iterative image reconstruction algorithm with sensitivity matrix updating based on real measurements for electrical capacitance tomography. Measurement Science and Technology 20(11)/2009, 115502.
Google Scholar
Trentesaux D.: Distributed control of production systems. Engineering Applications of Artificial Intelligence 22/2009.
Google Scholar
Vitliemov P.: About Manufacturing Execution Systems. Proceedings of the University of Ruse 52(5.1)/2013.
Google Scholar
W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). s.l.: W3C, 2008.
Google Scholar
Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Meas. Sci. Technol. 24/2013, 065302.
Google Scholar
Authors
Konrad Niderlakonrad.niderla@netrix.com.pl
Research and Development Center, Netrix S.A., Lublin Poland
Authors
Tomasz Rymarczyk1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin Poland
Authors
Jan SikoraResearch and Development Center, Netrix S.A., Lublin Poland
Statistics
Abstract views: 360PDF downloads: 231
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Grzegorz Kłosowski, Tomasz Rymarczyk, USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 3 (2017)
- Tomasz Rymarczyk, Tomasz Cieplak, Grzegorz Kłosowski, Paweł Rymarczyk, DESIGN OF DATA ANALYSIS SYSTEMS FOR BUSINESS PROCESS AUTOMATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik, CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Tomasz Rymarczyk, Grzegorz Kłosowski, THE USE OF ARTIFICIAL INTELLIGENCE IN AUTOMATED IN-HOUSE LOGISTICS CENTRES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)
- Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk, ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora, A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Tomasz Rymarczyk, Jan Sikora, SINGULAR INTEGRATION IN BOUNDARY ELEMENT METHOD FOR HELMHOLTZ EQUATION FORMULATED IN FREQUENCY DOMAIN , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 4 (2021)
- Grzegorz Kłosowski, Tomasz Rymarczyk, APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS IN WALL MOISTURE IDENTIFICATION BY EIT METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 1 (2022)
- Tomasz Rymarczyk, Jan Sikora, SOME MORE ON LOGARITHMIC SINGULARITY INTEGRATION IN BOUNDARY ELEMENT METOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Tomasz Rymarczyk, Barbara Stefaniak, Przemysław Adamkiewicz, NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)