ACTUALIZATION OF THE DISTRIBUTED KNOWLEDGE BASE OF ERGATIC SYSTEM USING THE METHOD OF FUZZY CLASSIFICATION
Viktor Perederiy
viperkms@yandex.uaNikolaev Sukhomlinskii National University, Department of Computer Systems and Networks (Ukraine)
Eugene Borchik
Nikolaev Sukhomlinskii National University, Department of Computer Systems and Networks (Ukraine)
Abstract
In the article a method of actualization the distributed knowledge base of ergatic system using the method of fuzzy classification is proposed. As an example we consider the request choice formation of an alternative of decision-making from the knowledge base, according to the values of the input parameters. Genetic algorithm is used for finding optimal solutions. For automation of calculations MATLAB software package was used.
Keywords:
knowledge base, fuzzy classification, membership functions, objectsReferences
Asuncion A., Newman D.J.: UCI Machine Learning Repository. Irvine (USA), University of California, School of Information and Computer Science, 2007.
Google Scholar
Kovalenko I.I.: Koncepciya postroeniya sistemnyx informacionnyx texnologij podderzhki ekspertnogo analiza scenariev [The concept of building system information technologies of support expert analysis of scenarios]. Kovalenko I.I., Perederij V.I., Shved A.V.: Sistemnі texnologії [System technologies]. Regional interuniversity collection of scientific works, 6 (71), 2010, p. 74–88 (in Russian).
Google Scholar
Perederij V. I.: Zastosuvannya merezhі Bajesa z ocіnki stupenya znachimostі vplivayuchix faktorіv na operatora v avtomatizovanix sistemax prijnyattya relevantnix rіshen [Application of Bayesian network assess the significance of the influencing factors on the operator in automated systems relevant decision-making]. Perederij V.I., Litvinenko V.I.: Komp’yuternі nauki ta іnformacіjnі texnologії [Computer Science and Information Technology]. Bulletin of the National University "Lviv Polytechnic". 733/2012, pp. 120-128 (in Ukrainian).
Google Scholar
Rotshtejn A.P.: Intellektualnye texnologii identifikacii: nechetkaya logika, geneticheskie algoritmy, nejronnye seti [Intellectual identification technologies: fuzzy logic, genetic algorithms, neural networks]. Universum, Vinnitsa 1999 (in Russian).
Google Scholar
Sapronov Yu.G.: Ekspertiza i diagnostika obektov i sistem servisa [Examination and diagnostics of objects and systems of service]. Academia, Мoscow 2008 (in Russian).
Google Scholar
Shtovba S.D.: Vvedenie v teoriyu nechetkix mnozhestv i nechetkuyu logiku [Introduction to the theory of fuzzy sets and fuzzy logic]. http://matlab.exponenta.ru/fuzzylogic/book1, (in Russian).
Google Scholar
Uzga-Rebrovs O.: Nenoteiktibu parvaldisana 3 [Uncertainty in management 3] Rezekne, 2010 (in Latvian).
Google Scholar
http://matlab.exponenta.ru/fuzzylogic/book1/1_7_5_5.php
Google Scholar
Authors
Viktor Perederiyviperkms@yandex.ua
Nikolaev Sukhomlinskii National University, Department of Computer Systems and Networks Ukraine
Authors
Eugene BorchikNikolaev Sukhomlinskii National University, Department of Computer Systems and Networks Ukraine
Statistics
Abstract views: 159PDF downloads: 49
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.