DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki
a.kurnicki@pollub.plLublin University of Technology, Automation and Metrology Department (Poland)
https://orcid.org/0000-0002-4988-7322
Bartłomiej Stańczyk
Accrea Engineering, Lublin, Poland (Poland)
https://orcid.org/0000-0002-2319-7358
Abstract
The article focuses on the design and implementation of mechanics, electronics and control system for a light-weight, modular, robotic manipulator for performing activities that require robot-human interaction in selected medicine-related applications. At the beginning, the functional requirements and physical architecture of such manipulator are discussed. The structure and control systems of the essential manipulator components/joint modules are presented in detail. Next, we introduce the software architecture of the master controller. Finally, examples of the current implementations of the modular manipulator are given.
Keywords:
modular manipulator, physical architecture, control architectureReferences
Campeau-Lecours A., et al.: Kinova Modular Robot Arms for Service Robotics Applications. International Journal of Robotics Applications and Technologies 5(2), 2017, 49–71 [http://doi.org/10.4018/IJRAT.2017070104].
DOI: https://doi.org/10.4018/IJRAT.2017070104
Google Scholar
Dibekci A., Bebek O.: Improving the Safety of Medical Robotic Systems. 7th IEEE International Conference on Biomedical Robotics and Biomechatronics, 2018, 73–78, [http://doi.org/10.1109/BIOROB.2018.8487914].
DOI: https://doi.org/10.1109/BIOROB.2018.8487914
Google Scholar
Fang H., Guo L., Bai S.: A Light Weight Arm Designed with Modular Joints. Bai S., Ceccarelli M. (eds): Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science 33, 2015, 47–54 [http://doi.org/10.1007/978-3-319-18126-4_5].
DOI: https://doi.org/10.1007/978-3-319-18126-4_5
Google Scholar
Guan Y., Jiang L., Zhangy X., Zhang H., Zhou X.: Development of novel robots with modular methodology. IEEE/RSJ International Conference on Intelligent Robots and Systems 2009, 2385–2390, [http://doi.org/10.1109/IROS.2009.5354051].
DOI: https://doi.org/10.1109/IROS.2009.5354051
Google Scholar
Hassan T., Hameed A., Nisar S., Kamal N., Hasan O., Al-Zahrawi: A Telesurgical Robotic System for Minimal Invasive Surgery. IEEE Systems Journal 10(3), 2016, 1035–1045 [http://doi.org/10.1109/JSYST.2014.2331146].
DOI: https://doi.org/10.1109/JSYST.2014.2331146
Google Scholar
Jain S., Farshchiansadegh A., Broad A., Abdollahi F., Mussa-Ivaldi F., Argall B.: Assistive robotic manipulation through shared autonomy and a Body-Machine Interface. IEEE International Conference on Rehabilitation Robotics, 2015, 526–531, [http://doi.org/10.1109/ICORR.2015.7281253].
DOI: https://doi.org/10.1109/ICORR.2015.7281253
Google Scholar
Kurnicki A., Stańczyk B.: Manipulator Control System for Remote USG Examination. Journal of Automation, Mobile Robotics and Intelligent Systems 13(2), 2019, 48–59 [http://doi.org/10.5604/20830157.1121333].
DOI: https://doi.org/10.5604/20830157.1121333
Google Scholar
Schrock P., Farelo F., Alqasemi R., Dubey R.: Design, simulation and testing of a new modular wheelchair mounted robotic arm to perform activities of daily living. IEEE International Conference on Rehabilitation Robotics, 2009, 518–523 [http://doi.org/10.1109/ICORR.2009.5209469].
DOI: https://doi.org/10.1109/ICORR.2009.5209469
Google Scholar
Siciliano B., Sciavicco L., Villani L., Oriolo G.: Robotics. Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing, Springer-Verlag, London 2009 [http://doi.org/10.1007/978-1-84628-642-1].
DOI: https://doi.org/10.1007/978-1-84628-642-1
Google Scholar
Tremblay T., Padir T.: Modular Robot Arm Design for Physical Human-Robot Interaction. IEEE International Conference on Systems, Man, and Cybernetics, 2013, 4482–4487, [http://doi.org/10.1109/SMC.2013.762].
DOI: https://doi.org/10.1109/SMC.2013.762
Google Scholar
Vogel J., Haddadin S., Simeral J. D., Stavisky S.D., Bacher D., Hochberg L. R., Donoghue J. P.: Continuous Control of the DLR Light-Weight Robot III by a Human with Tetraplegia Using the BrainGate2 Neural Interface System. Khatib O., Kumar V., Sukhatme G. (eds): Experimental Robotics. Springer Tracts in Advanced Robotics 79. Springer, Berlin, Heidelberg 2014 [http://doi.org/10.1007/978-3-642-28572-1_9].
DOI: https://doi.org/10.1007/978-3-642-28572-1_9
Google Scholar
Ramcip project homepage, https://ramcip-project.eu/ (accessed: 27.06.2020).
Google Scholar
ROS Homepage, https://www.ros.org/ (accessed: 27.06.2020).
Google Scholar
Authors
Adam Kurnickia.kurnicki@pollub.pl
Lublin University of Technology, Automation and Metrology Department Poland
https://orcid.org/0000-0002-4988-7322
Authors
Bartłomiej StańczykAccrea Engineering, Lublin, Poland Poland
https://orcid.org/0000-0002-2319-7358
Statistics
Abstract views: 324PDF downloads: 235
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.