MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS

Jakub Grotel

j.grotel@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science (Poland)
http://orcid.org/0000-0001-8428-2292

Abstract

Magnetoelectric multiferroics are solid-state materials which exhibit a coupling between ferroelectric and magnetic orders. This phenomenon is known as the magnetoelectric (ME) effect. Multiferroic materials possess a wide range of potential applications in such fields as metrology, electronics, energy harvesting & conversion, and medicine. Multiferroic research is facing two main challenges. Firstly, scientists are continuously trying to obtain a material with sufficiently strong, room-temperature ME coupling that would enable its commercial application. Secondly, the measurement techniques used in multiferroic research are often problematic to implement in a laboratory setting and fail to yield reproducible results. The aim of the present work is to discuss three most commonly used methods in multiferroic studies; the lock-in technique, the Sawyer-Tower (S-T) circuit and dielectric constant measurements. The paper opens with a general description of multiferroics which is followed by mathematical representation of the ME effect. The main body deals with the description of the aforementioned measurement techniques. The article closes with a conclusion and outlook for future research.


Keywords:

multiferroics, magnetoelectric effect, Sawyer-Tower circuit, magnetocapacitance

Bain A. K., Chand P.: Ferroelectrics: Principles and Applications. Wiley, 2017
DOI: https://doi.org/10.1002/9783527805310   Google Scholar

Bonaedy T, Koo Y. S., Sung K. D., Jung J. H.: Resistive magnetodielectric property of polycrystalline γ-Fe2O3. Applied Physics Letters 91(13)/2007, 132901 [http://doi.org/10.1063/1.2790474].
DOI: https://doi.org/10.1063/1.2790474   Google Scholar

Catalan G.: Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters 88(10)/2006, 102902 [http://doi.org/10.1063/1.2177543].
DOI: https://doi.org/10.1063/1.2177543   Google Scholar

Cheong S.-W., Mostovoy M.: Multiferroics: a magnetic twist for ferroelectricity. Nature Materials 6(1)/2007, 13–20 [http://doi.org/10.1038/nmat1804].
DOI: https://doi.org/10.1038/nmat1804   Google Scholar

Das C., Shahee A., Lalla N., Shripathi T.: A simple and low cost Sawyer-Tower ferro-electric loop tracer with variable frequency and compensation circuit. Proceedings of the 54th DAE Solid State Physics Symposium, 2009, 439.
  Google Scholar

Dawber M., Rabe K. M, Scott J. F.: Physics of thin-film ferroelectric oxides. Reviews of Modern Physics 77(4)/2005, 1083 [http://doi.org/10.1103/RevModPhys.77.1083].
DOI: https://doi.org/10.1103/RevModPhys.77.1083   Google Scholar

Duong G. V., Groessinger R., Schoenhart M., Bueno-Basques D.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316(2)/2007, 390-393 [http://doi.org/10.1016/j.jmmm.2007.03.185].
DOI: https://doi.org/10.1016/j.jmmm.2007.03.185   Google Scholar

Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature (7104)/2006, 759–765 [http://doi.org/10.1038/nature05023].
DOI: https://doi.org/10.1038/nature05023   Google Scholar

Fiebig M., Lottermoser T., Meier D., Trassin M.: The evolution of multiferroics. Nature Reviews Materials 1/2016, 16046 [http://doi.org/10.1038/natrevmats.2016.46].
DOI: https://doi.org/10.1038/natrevmats.2016.46   Google Scholar

Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38(8)/2005, R123 [http://doi.org/10.1088/0022-3727/38/8/R01].
DOI: https://doi.org/10.1088/0022-3727/38/8/R01   Google Scholar

Fuentes-Cobas L. E., Matutes-Aquino J. A., Fuentes-Montero M. E.: Handbook of Magnetic Materials, Chapter 3- Magnetoelectricity. Elsevier, 2011
DOI: https://doi.org/10.1016/B978-0-444-53780-5.00003-X   Google Scholar

Guobin C., Hui Y., Xiaoming Z., Jun L., Jun T.: Clarification of the Magnetocapacitance Mechanism for Fe3O4-PDMS Nanocomposites. Journal of Nanomaterials 2015/2015, 982174 [http://doi.org/10.1155/2015/982174].
DOI: https://doi.org/10.1155/2015/982174   Google Scholar

Hishiyama Y., Kaburagi Y., Inagaki M.: Materials Science and Engineering of Carbon: Characterization. Elsevier, 2016
  Google Scholar

Khomskii D.: Classifying Multiferroics: Mechanisms and Effects. Physics 2/2009 [http://doi.org/10.1103/Physics.2.20].
DOI: https://doi.org/10.1103/Physics.2.20   Google Scholar

Kimura T.: Magnetoelectric Hexaferrites. Annual Review of Condensed Matter Physics 3(1)/2012, 93–110 [http://doi.org/10.1146/annurev-conmatphys-020911-125101].
DOI: https://doi.org/10.1146/annurev-conmatphys-020911-125101   Google Scholar

Kitagawa Y., Hiraoka Y., Honda T., Ishikura T., Nakamura H., Kimura T.: Low-field magnetoelectric effect at room temperature. Nature Materials 9(10)/2010, 797–802 [http://doi.org/10.1038/nmat2826].
DOI: https://doi.org/10.1038/nmat2826   Google Scholar

Kreisel J., Kenzelmann M.: Multiferroics – the challenge of coupling magnetism and ferroelectricity. Europhysics News 40(5)/2009, 17–20 [http://doi.org/10.1051/epn/2009702].
DOI: https://doi.org/10.1051/epn/2009702   Google Scholar

Kuila S., Tiwary S., Sahoo M. R., Barik A., Vishwakarma P. N.: Measurement of temperature dependent magnetoelectricity in BiFe(1−x)CoxO3; x = 0, 0.01, 0.02. Journal of Alloys and Compounds 709/2017, 158–164 [http://doi.org/10.1016/j.jallcom.2017.03.118].
DOI: https://doi.org/10.1016/j.jallcom.2017.03.118   Google Scholar

Mahesh Kumar M., Srinivas A., Suryanarayana S. V., Kumar G. S., Bhimasankaram T.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21(3)/1998, 251–255 [http://doi.org/10.1007/BF02744978].
DOI: https://doi.org/10.1007/BF02744978   Google Scholar

Parish M. M.: Magnetocapacitance without magnetism. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372(2009)/2014 [http://doi.org/10.1098/rsta.2012.0452].
DOI: https://doi.org/10.1098/rsta.2012.0452   Google Scholar

Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71/2009, 299 [http://doi.org/10.1140/epjb/e2009-00336-7].
DOI: https://doi.org/10.1140/epjb/e2009-00336-7   Google Scholar

Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161(1)/1994, 165–180 [http://doi.org/10.1080/00150199408213365].
DOI: https://doi.org/10.1080/00150199408213365   Google Scholar

Serway R., Jewett Jr. J. W.: Physics for Scientists and Engineers. Cengage Learning, 2014.
  Google Scholar

Siratori K., Kohn K., Kita E.: Magnetoelectric Effect in Magnetic Materials. Acta Physica Polonica A 81/1992, 431–466 [http://doi.org/10.12693/APhysPolA.81.431].
DOI: https://doi.org/10.12693/APhysPolA.81.431   Google Scholar

Spaldin N. A., Cheong S.-W., Ramesh R.: Multiferroics: Past, present, and future. Physics Today 63(10)/2010, 38–43 [http://doi.org/10.1063/1.3502547].
DOI: https://doi.org/10.1063/1.3502547   Google Scholar

Stewart M., Cain M., Hall D.: Ferroelectric Hysteresis Measurement and Analysis. NPL Report 152, 1999
  Google Scholar

Turik A. V., Pavlenko A. V.: Magnetodielectric Effect and Magnetoelectricity in Multiferroics and Heterogeneous Systems: Modeling and Experiment. Ferroelectrics 444(1)/2013, 53–59 [http://doi.org/10.1080/00150193.2013.786308].
DOI: https://doi.org/10.1080/00150193.2013.786308   Google Scholar

Vopson M. M., Fetisov Y. K., Caruntu G., Srinivasan G.: Measurement Techniques of the Magneto-Electric Coupling in Multiferroics. Materials 10(8)/2017 [http://doi.org/10.3390/ma10080963].
DOI: https://doi.org/10.3390/ma10080963   Google Scholar

Vopson M. M.: Fundamentals of Multiferroic Materials and Their Possible Applications. Critical Reviews in Solid State and Materials Sciences 40(4)/2015, 223–250 [http://doi.org/10.1080/10408436.2014.992584].
DOI: https://doi.org/10.1080/10408436.2014.992584   Google Scholar

Stanford Research Systems, Inc., Model SR830 DSP Lock-In Amplifier. User Manual, 2011.
  Google Scholar

http://physicsopenlab.org/2016/10/10/shot-noise-and-electron-charge/ (available: 02.2021).
  Google Scholar

http://www.scholarpedia.org/article/1/f_noise (available: 02.2021).
  Google Scholar

https://techweb.rohm.com/knowledge/emc/s-emc/01-s-emc/6943 (available: 02.2021).
  Google Scholar

https://www.electronics-notes.com/articles/test-methods/lcr-meter-bridge/primer-basics.php (available: 02.2021)
  Google Scholar

https://www.voltech.com/Products/DC1000A/Howitworks.aspx (available: 02.2021).
  Google Scholar

Download


Published
2021-03-31

Cited by

Grotel, J. (2021). MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(1), 10–14. https://doi.org/10.35784/iapgos.2583

Authors

Jakub Grotel 
j.grotel@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science Poland
http://orcid.org/0000-0001-8428-2292

Statistics

Abstract views: 549
PDF downloads: 649