METHOD AND GAS DISCHARGE VISUALIZATION TOOL FOR ANALYZING LIQUID-PHASE BIOLOGICAL OBJECTS

Yaroslav A. Kulyk


Vinnytsya National Technical University (Ukraine)
http://orcid.org/0000-0001-8327-8259

Bohdan P. Knysh


Vinnytsya National Technical University (Ukraine)
http://orcid.org/0000-0002-6779-4349

Roman V. Maslii


Vinnytsya National Technical University (Ukraine)
http://orcid.org/0000-0003-3021-4328

Roman N. Kvyetnyy

rkvetny@vntu.edu.ua
Vinnytsya National Technical University (Ukraine)
http://orcid.org/0000-0002-9192-9258

Valentyna V. Shcherba


Vinnytsya National Medical University (Ukraine)
http://orcid.org/0000-0001-6911-7299

Anatoliy Ia. Kulyk


Vinnytsya National Medical University (Ukraine)
http://orcid.org/0000-0003-2472-1665

Abstract

In the article are presented the results of researches that touch the problem of the reliability improvement of determining the impurities concentration in biological objects in liquid by using the method of gas discharge visualization. There is an improved analysis method for biological objects in liquid based on gas discharge visualization (GDV), proposed criteria approach towards the assessment of liquid bio object’s composition applying this method, presented the assessment of the nature of liquid bio objects, which use the intensity of spectral components of its radiation has gotten during GDV. There is a developed and researched math model of ignition of a crown discharge and the dependency of spectrum intensity of radiation of liquid-phase biological object on its chemical composition proposed a conversion function for the assessment of the impurities concentration, together with the informative parameters of GDV images. All the results of the experimental researches of GDV and spectral composition of liquid-phase biological objects (LPBO) are presented in the article. The proposed approach lets specify the range of Mg concentrations in an oral fluid (OF) at various thyroid disorders obtained by the trilonometric method. It was found that the concentration of Mg in oral fluid of patients without thyroid disease is 12.73 ± 2.16 mg/l, patients with risk factors for thyroid disease have a concentration of 14.98 ± 1.92 mg/l, patients with sporadic goiter have a concentration of 26.65 ± 3.73 mg/l. Such data allow providing the patients with a better diagnosis of pathological disorders in glandular thyroids that are based on the concentration of Mg in oral fluid. It is confirmed that the concentration of Mg in oral fluid greater than 15 mg/l may indicate the presence of trilonometric pathology, including the focal thyroid gland.


Keywords:

gas discharge visualization, liquid-phase biological objects

Anton A.P. et al.: Headspace-programmed temperature vaporizer-mass spectrometry and pattern recognition techniques for the analysis of volatiles in saliva samples. Talanta 160, 2016, 21–27 [http://doi.org/10.1016/j.talanta.2016.06.061].
DOI: https://doi.org/10.1016/j.talanta.2016.06.061   Google Scholar

Bilinsky J. J., Pavlyuk O.A.: Methods and means of gas-discharge visualization for different liquid-phase bioobjects. VNTU, Vinnytsia 2016.
  Google Scholar

Bilynskyy J. J. et al.: Research performance of gas discharge visualization liquid-phase objects images. Bulletin of Vinnytsia Polytechnic Institute 5, 2011, 206–211.
  Google Scholar

Bilynskyy J. J., Pavliuk O. A.: The Research of Gas Glow Spectra of the Liquid-phase Object Discharge Visualization. Proceedings of the International Conference TCSET’2014, Lviv 2014.
  Google Scholar

Bresciani M. et al.: Monitoring water quality in two dammed reservoirs from multispectral satellite data. European Journal of Remote Sensing 2019, 113–122 [http://doi.org/10.1080/22797254.2019.1686956].
DOI: https://doi.org/10.1080/22797254.2019.1686956   Google Scholar

Feng J., Vince S.: Nanoscale Plasmonic Interferometers for Multispectral, High-Throughput Biochemical Sensing. Nano Lett. 2, 2012, 602–609.
DOI: https://doi.org/10.1021/nl203325s   Google Scholar

Hacher G. W. et al.: Daytime-related rhythmicity of gas visualization (GDV) parameters: detection and comparison to biochemical parameters measured in saliva. Energy Fields Electrophonic Analysis In Humans And Nature 2, 2011, 214–232.
  Google Scholar

Halkias X. C.: Analysis of Kirlian images: feature extraction and segmentation. Proceedings 7th International Conference ICSP'04, 2004 [http://ru.scribd.com/doc/113932089/Halkias-Maragos-Analysis-of-Kirlian-Images].
  Google Scholar

Higashi Y., Shimada T.: Simultaneous determination of salivary testosterone and dehydroepiandrosterone using LC-MS/MS: Method development and evaluation of applicability for diagnosis and medication for late-onset hypogonadism. Chromatogr B Analyt Technol Biomed Life Sci. 2009, 2615–2623.
DOI: https://doi.org/10.1016/j.jchromb.2008.10.051   Google Scholar

Jou Y. J. et al.: Proteomic identification of salivary transferrin as a biomarker for early detection of oral cancer. Chim Acta 2, 2010, 41–48.
DOI: https://doi.org/10.1016/j.aca.2010.09.030   Google Scholar

Poznyak S. S.: On the use of the characteristics of the gas discharge induced by the electron-optical emission of the object of the environment. Economics and environmental management: an electronic scientific journal 1, 2013.
  Google Scholar

Rosa L. K. et al.: Oral health, organic and inorganic saliva composition of men with Schizophrenia: Case-control study. Journal of Trace Elements in Medicine and Biology 66, 2021, 126743 [http://doi.org/10.1016/j.jtemb.2021.126743].
DOI: https://doi.org/10.1016/j.jtemb.2021.126743   Google Scholar

Safranov T. et al.: Water resources of Ukraine: usage, qualitive and quantitative assessment. Environmental problems 1(2), 2016.
  Google Scholar

Tarabarova C. B. Quality of drinking water in Ukraine: current status, impact on health, comparative characteristics of the domestic base with international standards [http://www.health.gov.ua/].
  Google Scholar

Title XIV of The Public Health Service Act: Safety of Public Water Systems (Safe Drinking Water Act) 2020, EPA [https://www.govinfo.gov/content/pkg/COMPS-892/pdf/COMPS-892.pdf].
  Google Scholar

Voeikov V., Korotkov K.: The Emerging Science of Water. 2017.
  Google Scholar

Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. CRC Press 2017.
DOI: https://doi.org/10.1201/9781315098050   Google Scholar

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, London 2019 [http://doi.org/10.1201/9780429057618].
DOI: https://doi.org/10.1201/9780429057618   Google Scholar

Wong M.: Surface-enhanced Raman spectroscopy for forensic analysis of human saliva. PhD Thesis. Boston University, 2017 [https://www.proquest.com/openview/f5b4d542ed97f157a0004216897561da/1].
  Google Scholar

Download


Published
2021-09-30

Cited by

Kulyk, Y. A., Knysh, B. P., Maslii, R. V., Kvyetnyy, R. N., Shcherba, V. V., & Kulyk, A. I. (2021). METHOD AND GAS DISCHARGE VISUALIZATION TOOL FOR ANALYZING LIQUID-PHASE BIOLOGICAL OBJECTS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(3), 22–29. https://doi.org/10.35784/iapgos.2709

Authors

Yaroslav A. Kulyk 

Vinnytsya National Technical University Ukraine
http://orcid.org/0000-0001-8327-8259

Authors

Bohdan P. Knysh 

Vinnytsya National Technical University Ukraine
http://orcid.org/0000-0002-6779-4349

Authors

Roman V. Maslii 

Vinnytsya National Technical University Ukraine
http://orcid.org/0000-0003-3021-4328

Authors

Roman N. Kvyetnyy 
rkvetny@vntu.edu.ua
Vinnytsya National Technical University Ukraine
http://orcid.org/0000-0002-9192-9258

Authors

Valentyna V. Shcherba 

Vinnytsya National Medical University Ukraine
http://orcid.org/0000-0001-6911-7299

Authors

Anatoliy Ia. Kulyk 

Vinnytsya National Medical University Ukraine
http://orcid.org/0000-0003-2472-1665

Statistics

Abstract views: 370
PDF downloads: 217