ELLIPSOMETRY BASED SPECTROSCOPIC COMPLEX FOR RAPID ASSESSMENT OF THE Bi2Te3-xSex THIN FILMS COMPOSITION
Vladimir Kovalev
vladimirkovalev.inc@gmail.comMOCVD Semiconductor Growth Laboratory, Kotelnikov Institute of Radio-Engineering and Electronics of RAS (Russian Federation)
http://orcid.org/0000-0003-3570-393X
Saygid Uvaysov
MIREA – Russian Technological University (Russian Federation)
http://orcid.org/0000-0003-1943-6819
Marcin Bogucki
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation (Poland)
http://orcid.org/0000-0001-5296-3827
Abstract
A comparative analysis of the current state and development of spectral ellipsometry (SE) is carried out, the main limitations typical of popular configurations of measuring devices are determined. An original technical solution is proposed that allows one to create a two-source SE that implements the ellipsometry method with switching orthogonal polarization states. The measuring setup provides high precision of measurements of ellipsometric parameters Ψ and Δ in the spectral range of 270–2200 nm and the speed determined by the characteristics of pulsed sources with a simple ellipsometer design. As objects for experimental researches, confirming the efficiency and high precision qualities of the fabricated SE, we used a GaAs/ZnS-quarter-wave device for a CO2 laser and SiO2 on Si calibration plates. The optical properties of Bi2Te3-xSex films were investigated in the range of 270–1000 nm using a multi-angle SE. It was shown that the optical properties of Bi2Te3-xSex films monotonically change depending on the ratio of selenium and tellurium.
Keywords:
thin films, optical properties, spectroscopy, Fourier transform, ellipsometry and polarimetry, optics on surfaces, instrumentation, measurements and metrologyReferences
Acher O., Bigan E., Drévillon B.: Improvements of phase-modulated ellipsometry. Rev. Sci. Instrum. 60, 1989 [http://doi.org/10.1063/1.1140580].
DOI: https://doi.org/10.1063/1.1140580
Google Scholar
Alonso M. I., Garriga M.: Optical properties of semiconductors. Springer International Publishing Vol. 212, 2018.
DOI: https://doi.org/10.1007/978-3-319-75377-5_4
Google Scholar
Aspnes D. E.: Spectroscopic ellipsometry — Past, present, and future. Thin Solid Films 571, 2014, 334–344 [http://doi.org/10.1016/j.tsf.2014.03.056].
DOI: https://doi.org/10.1016/j.tsf.2014.03.056
Google Scholar
Azzam R. M. A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2, 1978, [http://doi.org/10.1364/ol.2.000148].
DOI: https://doi.org/10.1364/OL.2.000148
Google Scholar
Collins R. W., Koh J.: Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films. Journal of the Optical Society of America A 16, 1999, 1997 [http://doi.org/10.1364/JOSAA.16.001997].
DOI: https://doi.org/10.1364/JOSAA.16.001997
Google Scholar
Fujiwara H.: Spectroscopic Ellipsometry: Principles and Applications. John Wiley and Sons, 2007.
DOI: https://doi.org/10.1002/9780470060193
Google Scholar
Furchner A., Walder C., Zellmeier M., Rappich J., Hinrichs K.: Broadband infrared Mueller-matrix ellipsometry for studies of structured surfaces and thin films. Appl. Opt. 57, 2018, 7895 [http://doi.org/10.1364/AO.57.007895].
DOI: https://doi.org/10.1364/AO.57.007895
Google Scholar
Garcia-Caurel E., de Martino A., Drévillon B.: Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid Films 455–456, 2004, 120–123 [http://doi.org/10.1016/j.tsf.2003.12.056].
DOI: https://doi.org/10.1016/j.tsf.2003.12.056
Google Scholar
Garcia-Caurel E., de Martino A., Gaston J.-P., Yan L.: Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization. Applied Spectroscopy 67, 2013, 1–21 [http://doi.org/10.1366/12-06883].
DOI: https://doi.org/10.1366/12-06883
Google Scholar
Hinrichs K., Eichhorn K. J., Ertl G., Mills D. L., Lüth H.: Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences Vol. 52, Berlin, Heidelberg, 2014.
DOI: https://doi.org/10.1007/978-3-642-40128-2
Google Scholar
Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V., Rossukanyi N. M.: An achromatic four-mirror compensator for spectral ellipsometers. Opt. Spectrosc. 123, 2017 [http://doi.org/10.1134/S0030400X1707013X].
DOI: https://doi.org/10.1134/S0030400X1707013X
Google Scholar
Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: An LED multichannel spectral ellipsometer with binary modulation of the polarization state. Instruments and Experimental Techniques 57, 2014 [http://doi.org/10.1134/S002044121405008X].
DOI: https://doi.org/10.1134/S002044121405008X
Google Scholar
Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: LED broadband spectral ellipsometer with switching of orthogonal polarization states. J. Opt. Technol. 2016, 83, 181 [http://doi.org/10.1364/JOT.83.000181.
DOI: https://doi.org/10.1364/JOT.83.000181
Google Scholar
Kovalev V. V., Kuznetsov P. I., Yakushcheva G. G., Yapaskurt O. V., Kovalev V. I., Rukovishnikov A. I., Kovalev S. V.: MOVPE deposition and optical properties of thin films of a Bi2Te3-xSex topological insulator. J. Phys. Conf. Ser. 1199, 2019, 012038 [http://doi.org/10.1088/1742-6596/1199/1/012038].
DOI: https://doi.org/10.1088/1742-6596/1199/1/012038
Google Scholar
Kovalev, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., Kovalev, S. V., Kovalev, V. V., Amelichev, V. V., Kostyuk, D. V., Vasil’ev, D. V., Orlov, E. P. LED magneto-optical ellipsometer with the switching of orthogonal polarization states. Instruments and Experimental Techniques 59, 2016, 707–711 [http://doi.org/10.1134/S0020441216040084].
DOI: https://doi.org/10.1134/S0020441216040084
Google Scholar
Kroning A., Furchner A., Aulich D., Bittrich E., Rauch S., Uhlmann P., Eichhorn K. J., Seeber M., Luzinov I., Kilbey S. M., et al.: In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment. ACS Appl. Mater. Interfaces 7, 2015, 12430–12439 [http://doi.org/10.1021/am5075997].
DOI: https://doi.org/10.1021/am5075997
Google Scholar
Li K., Wang S., Wang L., Yu H., Jing N., Xue R., Wang Z.: Fast and Sensitive Ellipsometry-Based Biosensing. Sensors 18, 2017, 15 [http://doi.org/10.3390/s18010015].
DOI: https://doi.org/10.3390/s18010015
Google Scholar
Losurdo M., Bergmair M., Bruno G., Cattelan D., Cobet C., de Martino A., Fleischer K., Dohcevic-Mitrovic Z., Esser N., Galliet M., et al.: Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J. Nanoparticle 11, 2009, 1521–1554 [http://doi.org/10.1007/s11051-009-9662-6].
DOI: https://doi.org/10.1007/s11051-009-9662-6
Google Scholar
de Martino A., Kim Y.-K., Garcia-Caurel E., Laude B., Drévillon B.: Optimized Mueller polarimeter with liquid crystals. Opt. Lett. 28, 2003, 616 [http://doi.org/10.1364/OL.28.000616].
DOI: https://doi.org/10.1364/OL.28.000616
Google Scholar
Schmidtling T., Pohl U. W., Richter W., Peters S.: In situ spectroscopic ellipsometry study of GaN nucleation layer growth and annealing on sapphire in metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 2005, [http://doi.org/10.1063/1.1999033].
DOI: https://doi.org/10.1063/1.1999033
Google Scholar
Tompkins H. G., Irene E. A.: Handbook of Ellipsometry. William Andrew Publishing, 2005.
DOI: https://doi.org/10.1007/3-540-27488-X
Google Scholar
Yim C., O’Brien M., McEvoy N., Winters S., Mirza I., Lunney J. G., Duesberg G. S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters 104, 2014 [http://doi.org/10.1063/1.4868108].
DOI: https://doi.org/10.1063/1.4868108
Google Scholar
Authors
Vladimir Kovalevvladimirkovalev.inc@gmail.com
MOCVD Semiconductor Growth Laboratory, Kotelnikov Institute of Radio-Engineering and Electronics of RAS Russian Federation
http://orcid.org/0000-0003-3570-393X
Authors
Saygid UvaysovMIREA – Russian Technological University Russian Federation
http://orcid.org/0000-0003-1943-6819
Authors
Marcin BoguckiLublin University of Technology, Faculty of Mechanical Engineering, Department of Automation Poland
http://orcid.org/0000-0001-5296-3827
Statistics
Abstract views: 383PDF downloads: 165
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.