ELLIPSOMETRY BASED SPECTROSCOPIC COMPLEX FOR RAPID ASSESSMENT OF THE Bi2Te3-xSex THIN FILMS COMPOSITION

Vladimir Kovalev

vladimirkovalev.inc@gmail.com
MOCVD Semiconductor Growth Laboratory, Kotelnikov Institute of Radio-Engineering and Electronics of RAS (Russian Federation)
http://orcid.org/0000-0003-3570-393X

Saygid Uvaysov


MIREA – Russian Technological University (Russian Federation)
http://orcid.org/0000-0003-1943-6819

Marcin Bogucki


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation (Poland)
http://orcid.org/0000-0001-5296-3827

Abstract

A comparative analysis of the current state and development of spectral ellipsometry (SE) is carried out, the main limitations typical of popular configurations of measuring devices are determined. An original technical solution is proposed that allows one to create a two-source SE that implements the ellipsometry method with switching orthogonal polarization states. The measuring setup provides high precision of measurements of ellipsometric parameters Ψ and Δ in the spectral range of 270–2200 nm and the speed determined by the characteristics of pulsed sources with a simple ellipsometer design. As objects for experimental researches, confirming the efficiency and high precision qualities of the fabricated SE, we used a GaAs/ZnS-quarter-wave device for a CO2 laser and SiO2 on Si calibration plates. The optical properties of Bi2Te3-xSex films were investigated in the range of 270–1000 nm using a multi-angle SE. It was shown that the optical properties of Bi2Te3-xSex films monotonically change depending on the ratio of selenium and tellurium.


Keywords:

thin films, optical properties, spectroscopy, Fourier transform, ellipsometry and polarimetry, optics on surfaces, instrumentation, measurements and metrology

Acher O., Bigan E., Drévillon B.: Improvements of phase-modulated ellipsometry. Rev. Sci. Instrum. 60, 1989 [http://doi.org/10.1063/1.1140580].
DOI: https://doi.org/10.1063/1.1140580   Google Scholar

Alonso M. I., Garriga M.: Optical properties of semiconductors. Springer International Publishing Vol. 212, 2018.
DOI: https://doi.org/10.1007/978-3-319-75377-5_4   Google Scholar

Aspnes D. E.: Spectroscopic ellipsometry — Past, present, and future. Thin Solid Films 571, 2014, 334–344 [http://doi.org/10.1016/j.tsf.2014.03.056].
DOI: https://doi.org/10.1016/j.tsf.2014.03.056   Google Scholar

Azzam R. M. A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2, 1978, [http://doi.org/10.1364/ol.2.000148].
DOI: https://doi.org/10.1364/OL.2.000148   Google Scholar

Collins R. W., Koh J.: Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films. Journal of the Optical Society of America A 16, 1999, 1997 [http://doi.org/10.1364/JOSAA.16.001997].
DOI: https://doi.org/10.1364/JOSAA.16.001997   Google Scholar

Fujiwara H.: Spectroscopic Ellipsometry: Principles and Applications. John Wiley and Sons, 2007.
DOI: https://doi.org/10.1002/9780470060193   Google Scholar

Furchner A., Walder C., Zellmeier M., Rappich J., Hinrichs K.: Broadband infrared Mueller-matrix ellipsometry for studies of structured surfaces and thin films. Appl. Opt. 57, 2018, 7895 [http://doi.org/10.1364/AO.57.007895].
DOI: https://doi.org/10.1364/AO.57.007895   Google Scholar

Garcia-Caurel E., de Martino A., Drévillon B.: Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid Films 455–456, 2004, 120–123 [http://doi.org/10.1016/j.tsf.2003.12.056].
DOI: https://doi.org/10.1016/j.tsf.2003.12.056   Google Scholar

Garcia-Caurel E., de Martino A., Gaston J.-P., Yan L.: Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization. Applied Spectroscopy 67, 2013, 1–21 [http://doi.org/10.1366/12-06883].
DOI: https://doi.org/10.1366/12-06883   Google Scholar

Hinrichs K., Eichhorn K. J., Ertl G., Mills D. L., Lüth H.: Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences Vol. 52, Berlin, Heidelberg, 2014.
DOI: https://doi.org/10.1007/978-3-642-40128-2   Google Scholar

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V., Rossukanyi N. M.: An achromatic four-mirror compensator for spectral ellipsometers. Opt. Spectrosc. 123, 2017 [http://doi.org/10.1134/S0030400X1707013X].
DOI: https://doi.org/10.1134/S0030400X1707013X   Google Scholar

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: An LED multichannel spectral ellipsometer with binary modulation of the polarization state. Instruments and Experimental Techniques 57, 2014 [http://doi.org/10.1134/S002044121405008X].
DOI: https://doi.org/10.1134/S002044121405008X   Google Scholar

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: LED broadband spectral ellipsometer with switching of orthogonal polarization states. J. Opt. Technol. 2016, 83, 181 [http://doi.org/10.1364/JOT.83.000181.
DOI: https://doi.org/10.1364/JOT.83.000181   Google Scholar

Kovalev V. V., Kuznetsov P. I., Yakushcheva G. G., Yapaskurt O. V., Kovalev V. I., Rukovishnikov A. I., Kovalev S. V.: MOVPE deposition and optical properties of thin films of a Bi2Te3-xSex topological insulator. J. Phys. Conf. Ser. 1199, 2019, 012038 [http://doi.org/10.1088/1742-6596/1199/1/012038].
DOI: https://doi.org/10.1088/1742-6596/1199/1/012038   Google Scholar

Kovalev, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., Kovalev, S. V., Kovalev, V. V., Amelichev, V. V., Kostyuk, D. V., Vasil’ev, D. V., Orlov, E. P. LED magneto-optical ellipsometer with the switching of orthogonal polarization states. Instruments and Experimental Techniques 59, 2016, 707–711 [http://doi.org/10.1134/S0020441216040084].
DOI: https://doi.org/10.1134/S0020441216040084   Google Scholar

Kroning A., Furchner A., Aulich D., Bittrich E., Rauch S., Uhlmann P., Eichhorn K. J., Seeber M., Luzinov I., Kilbey S. M., et al.: In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment. ACS Appl. Mater. Interfaces 7, 2015, 12430–12439 [http://doi.org/10.1021/am5075997].
DOI: https://doi.org/10.1021/am5075997   Google Scholar

Li K., Wang S., Wang L., Yu H., Jing N., Xue R., Wang Z.: Fast and Sensitive Ellipsometry-Based Biosensing. Sensors 18, 2017, 15 [http://doi.org/10.3390/s18010015].
DOI: https://doi.org/10.3390/s18010015   Google Scholar

Losurdo M., Bergmair M., Bruno G., Cattelan D., Cobet C., de Martino A., Fleischer K., Dohcevic-Mitrovic Z., Esser N., Galliet M., et al.: Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J. Nanoparticle 11, 2009, 1521–1554 [http://doi.org/10.1007/s11051-009-9662-6].
DOI: https://doi.org/10.1007/s11051-009-9662-6   Google Scholar

de Martino A., Kim Y.-K., Garcia-Caurel E., Laude B., Drévillon B.: Optimized Mueller polarimeter with liquid crystals. Opt. Lett. 28, 2003, 616 [http://doi.org/10.1364/OL.28.000616].
DOI: https://doi.org/10.1364/OL.28.000616   Google Scholar

Schmidtling T., Pohl U. W., Richter W., Peters S.: In situ spectroscopic ellipsometry study of GaN nucleation layer growth and annealing on sapphire in metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 2005, [http://doi.org/10.1063/1.1999033].
DOI: https://doi.org/10.1063/1.1999033   Google Scholar

Tompkins H. G., Irene E. A.: Handbook of Ellipsometry. William Andrew Publishing, 2005.
DOI: https://doi.org/10.1007/3-540-27488-X   Google Scholar

Yim C., O’Brien M., McEvoy N., Winters S., Mirza I., Lunney J. G., Duesberg G. S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters 104, 2014 [http://doi.org/10.1063/1.4868108].
DOI: https://doi.org/10.1063/1.4868108   Google Scholar

Download


Published
2021-12-20

Cited by

Kovalev, V., Uvaysov, S., & Bogucki, M. (2021). ELLIPSOMETRY BASED SPECTROSCOPIC COMPLEX FOR RAPID ASSESSMENT OF THE Bi2Te3-xSex THIN FILMS COMPOSITION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 67–74. https://doi.org/10.35784/iapgos.2855

Authors

Vladimir Kovalev 
vladimirkovalev.inc@gmail.com
MOCVD Semiconductor Growth Laboratory, Kotelnikov Institute of Radio-Engineering and Electronics of RAS Russian Federation
http://orcid.org/0000-0003-3570-393X

Authors

Saygid Uvaysov 

MIREA – Russian Technological University Russian Federation
http://orcid.org/0000-0003-1943-6819

Authors

Marcin Bogucki 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation Poland
http://orcid.org/0000-0001-5296-3827

Statistics

Abstract views: 383
PDF downloads: 165