Ahmed T. et al.: A Deep Learning based Bangladeshi Vehicle Classification using Fine-Tuned Multi-class Vehicle Image Network (MVINet) Model. 2023 International Conference on Next-Generation Computing, IoT and Machine Learning – NCIM, 2023, 1–6.
DOI: https://doi.org/10.1109/NCIM59001.2023.10212619
Ahmed U. et al.: Multi-aspect detection and classification with multi-feed dynamic frame skipping in vehicle of internet things. Wireless Netw, 2022, 1–12.
DOI: https://doi.org/10.1007/s11276-022-03076-9
Ashir S. M. et al.: A Transfer-Learning-Based Approach for Emergency Vehicle Detection. Eurasian Journal of Science and Engineering 8(1), 2022.
DOI: https://doi.org/10.23918/eajse.v8i1p75
Biswas D. et al.: An automatic car counting system using OverFeat framework. Sensors 17(7), 2017, 1535.
DOI: https://doi.org/10.3390/s17071535
Dong S. et al.: A survey on deep learning and its applications, Computer Science Review 40, 2021, 100379.
DOI: https://doi.org/10.1016/j.cosrev.2021.100379
Fouad M. M. et al.: Automated vehicle inspection model using a deep learning approach. J Ambient Intell Human Comput 14, 2023, 13971–13979.
DOI: https://doi.org/10.1007/s12652-022-04105-3
Ghazal B. et al.: Smart traffic light control system. Third international conference on electrical, electronics, computer engineering and their applications – EECEA, 2016, 140–145.
DOI: https://doi.org/10.1109/EECEA.2016.7470780
Hassan E. et al.: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study. Elmougy and Applications 82(11), 2023, 16591–16633.
DOI: https://doi.org/10.1007/s11042-022-13820-0
Impedovo D. et al.: Vehicular traffic congestion classification by visual features and deep learning approaches: a comparison. Sensors 19(23), 2019, 5213.
DOI: https://doi.org/10.3390/s19235213
Jain N. K. et al.: A review on traffic monitoring system techniques. SoCTA 2019, 569–577.
DOI: https://doi.org/10.1007/978-981-13-0589-4_53
Joo H. et al.: Traffic signal control for smart cities using reinforcement learning. Computer Communications 154, 2020, 324–330.
DOI: https://doi.org/10.1016/j.comcom.2020.03.005
Jung H. et al.: ResNet-based vehicle classification and localization in traffic surveillance systems. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, 61–67.
DOI: https://doi.org/10.1109/CVPRW.2017.129
Ke X. et al.: Multi-dimensional traffic congestion detection based on fusion of visual features and convolutional neural network. IEEE Transactions on Intelligent Transportation Systems 20(6), 2018, 2157–2170.
DOI: https://doi.org/10.1109/TITS.2018.2864612
Khan A. et al.: A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53, 2020, 5455–5516.
DOI: https://doi.org/10.1007/s10462-020-09825-6
Leitner D. et al.: Recent advances in traffic signal performance evaluation. Journal of Traffic and Transportation Engineering 9(4), 2022, 507–531.
DOI: https://doi.org/10.1016/j.jtte.2022.06.002
Manguri K. H. K. et al.: A Review of Computer Vision–Based Traffic Controlling and Monitoring. UHD Journal of Science and Technology 7(2), 2023, 6–15.
DOI: https://doi.org/10.21928/uhdjst.v7n2y2023.pp6-15
Manguri K. H. K., Mohammed A. A: Emergency vehicles classification for traffic signal system using optimized transfer DenseNet201 model. Indonesian Journal of Electrical Engineering and Computer Science 32(2), 2023, 1058–1068.
DOI: https://doi.org/10.11591/ijeecs.v32.i2.pp1058-1069
Mohammad M. A. et al.: New Ontology structure for intelligent controlling of traffic signals. Procedia Computer Science 207, 2022, 1201–1211.
DOI: https://doi.org/10.1016/j.procs.2022.09.176
Qadri S. S. S. M. et al.: State-of-art review of traffic signal control methods: challenges and opportunities. Eur. Transp. Res. Rev. 12(55), 2020, 1–23.
DOI: https://doi.org/10.1186/s12544-020-00439-1
Razali N. A. M. et al.: Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning. J Big Data 8(1), 2021, 1–25.
DOI: https://doi.org/10.1186/s40537-021-00542-7
Roy S., Rahman M. S.: Emergency vehicle detection on heavy traffic road from cctv footage using deep convolutional neural network. International Conference on Electrical, Computer and Communication Engineering – ECCE, 2019, 1–6.
DOI: https://doi.org/10.1109/ECACE.2019.8679295
Tomar I. et al.: State-of-Art review of traffic light synchronization for intelligent vehicles: current status, challenges, and emerging trends. Electronics 11(3), 2022, 465.
DOI: https://doi.org/10.3390/electronics11030465