Afzal T.M., Abe T., Hikida Y.: Energy and quality aspects during combined FIR convection drying of barley. Food Eng. 42, 1999, 177–182.
DOI: https://doi.org/10.1016/S0260-8774(99)00117-X
Bahlul N. et al.: Coupling of Microwave Radiations to Convective Drying for Improving Fruit Quality. 21st International Drying Symposium, 2018, 699.
DOI: https://doi.org/10.4995/IDS2018.2018.7794
Bandura V., Zozuliak I., Palamarchuk V.: Description of heat exchange in the similarity theory of vibrating drying process of sunflower. Ukrainian Journal of Food Science 2(2), 2014, 305–311.
Bandura V., Palamarchuk V.: Development of constructive and technological measures to increase the efficiency of infrared drying of energy-rich vegetable raw materials. IV International Scientific and Practical Conference "Land of Ukraine – the potential of economic and environmental security of the state", Vinnytsia, 2014, 24–27.
Bandura V., Tsurkan O., Palamarchuk V.: Experimental study of the technological parameters of the process of infrared drying of the technological parameters of the process of infrared drying of the moving layer of the raw material of oilseed crops. MOTROL. Commission of Motorization and Energetics in Agriculture 17(4), 2015, 211–214.
Bezbakh, I., Bakhmutyan, N.: Research on the process of drying fruits and berries in a suspended layer. Scientific works of ONAKHT, Odesa 28(2), 2006, 112–116.
Burdo O. H.: Energy monitoring of food production. Polygraph, Odessa 2008.
Derevenko V.: The main technological regularities of heat treatment of oily material for oil extraction. The Russian School of Problems of Science and Technology dedicated to the 80th anniversary of the birth of Academician V. P. Makeeva, Miass, 2004, 144–146.
Didur V., Tkachenkom O.: Justification of the modes of drying sunflower seeds of higher reproductions in a fluidized bed. Pr. TDATA 25, 2005.
Drukovany M. et al.: Improvement of thermal technology in the production of oil and biodiesel fuel: monograph. Vinnytsia 2014.
Jayas D. S., Ghosh P. K.: Preserving quality during grain drying and techniques for measuring grain quality. Department of Biosystems Engineering, E2-376 Engineering and Information Technology Complex, University of Manitoba 2006, 969–980.
Kotov B. I., Kyfyak V. V.: Identification of dynamic modes of heating and drying of grain products by IR radiation. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine. Series: Technology and energy of agricultural industry 194(2), 2014, 165–170.
Palamarchuk I. et al.: Physical-mathematical modeling of the process of infrared drying of rape with vibration transport of products. Mechatronic Systems 1, 2021, 243–253 [https://doi.org/10.1201/9781003224136-21].
DOI: https://doi.org/10.1201/9781003224136-21
Palamarchuk I. et al.: An analysis of power and energy parameters of the conveyor infrared dryer of oil-containing raw materials. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 13(2), 2023, 10–14 [https://doi.org/10.35784/iapgos.3487].
DOI: https://doi.org/10.35784/iapgos.3487
Palamarchuk I., Bandura V., Palamarchuk V.: Justification of the structural and technological scheme of the conveyor vibrating dryer. Vibrations in engineering and technologies 2(66), 2012, 116–125.
Palamarchuk, I., Bandura, V., Palamarchuk, V.: Analysis of the dynamics of a vibrating conveyor technological system with kinematic combined vibration excitation. MOTROL. Commission of Motorization and Energetics in Agriculture 4(15), 2013, 314–323.
Palamarchuk I., Bandura V., Palamarchuk V.: Vibrating conveyor dryer with infrared emitters: patent of Ukraine No. 87767; statement 28.02.2013; published 25.02.2014, Bull. No. 4, 4.
Palamarchuk I., Bandura V., Palamarchuk V.: Selection of the type of mechanical drive for a conveyor vibrating dryer with flexible working and transporting bodies. Materials of the IV international scientific and practical conference "Innovative energy technologies", Odesa, 2016, 27–30.
Palamarchuk I., Tsurkan O., Palamarchuk V.: Justification of the structural and technological scheme of the infrared vibrating conveyor dryer for post-harvest processing of loose agricultural products. Collection of scientific works of the Vinnytsia National Agrarian University. Series: Technical sciences 1(89), 2015, 117–123.
Snezhkin Yu. F.: Ways of intensification of drying processes. Industrial heat engineering 31(7), 2009, 89–90.
Sorochinsky V. F.: Efficiency of grain drying on grain dryers of various types. Bread products 3(4), 2009, 42–43.
Sorochinsky V. F.: Estimation of the homogeneity of the fluidized bed of grain by changes in the local heat flux density on the vertical surface of the heat exchange. SETT-2002, 2, 72–75.
Vasyliv V. et al.: Method of Electrohydraulic Activation of Water-Lime Suspension in Sugar Production. Tonkonogyi V. et al. (eds): Advanced Manufacturing Processes III. InterPartner 2021. 2022.
DOI: https://doi.org/10.1007/978-3-030-91327-4_64
Wei Q. et al.: Effects of Different Combined Drying Methods on Drying Uniformity and Quality of Dried Taro Slices. Drying Technology 37(3), 2019, 322–330 [https://doi.org/10.1080/07373937.2018.1445639].
DOI: https://doi.org/10.1080/07373937.2018.1445639
Zheplinska M., Mushtruk M., Salavor O.: Cavitational Impact on Electrical Conductivity in the Beet Processing Industry. Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes II. InterPartner 2020. 2021.
DOI: https://doi.org/10.1007/978-3-030-68014-5_73
Zheplinska M. et al.: Exploration of drying process of beets. Journal of Hygienic Engineering and Design 42, 2023, 315–320.