[1] Abrahamsen P. A: Review of Gaussian Random Fields and Correlation Functions. Apr. 1997 [https://doi.org/10.13140/RG.2.2.23937.20325].
[2] Bakhrushyn V.Ye. Matematychni osnovy modelyuvannya system: navchal’nyy posibnykdlya studentiv. Classic Private University, Zaporizhzhia 2009..
[3] Bilets’kyy V. S. et al.: Osnovy tekhniky ta tekhnolohiyi zbahachennya korysnykh kopalyn. Lira-K, Kiev 2020.
[4] Dobbins M. et al.: Recent Advances in Magnetic Separator Designs and Applications. Heavy Minerals Conference – SAIMM, 2009, 63–70 [www.saimm.co.za/Conferences/HMC2009/063-070_Dobbins.pdf].
[5] Drucker H. et al.: Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, 1996, 155–161 [http://papers.neurips.cc/paper/1238-support-vector-regression-machines.pdf].
[6] Duvenaud D.: Automatic Model Construction With Gaussian Processes Declaration. University of Cambridge, Doctor of Philosophy, 2014. [http://www.cs.toronto.edu/~duvenaud/thesis.pdf].
[7] Jämsä-Jounela S.-L.: Current Status and Future Trends in the Automation of Mineral and Metal Processing. IFAC Proceedings 33(22), 2000, 83–94 [https://doi.org/10.1016/s1474-6670(17)36973-2].
DOI: https://doi.org/10.1016/S1474-6670(17)36973-2
[8] Kocijan J., Ažman K.: An Example of Gaussian Process Model Identification. Conference MIPRO 2005:28, Ljubljana, Slovenia, 2005, 79–84 [http://www.researchgate.net/publication/228804422_An_example_of_Gaussian_process_model_identification].
[9] Kocijan J., Murray-Smith R.: Nonlinear Predictive Control With a Gaussian Process Model. Switching and Learning in Feedback Systems Conference, 2003 185–200 [http://www.researchgate.net/publication/221185944_Nonlinear_Predictive_ Control_with_a_Gaussian_Process_Model].
DOI: https://doi.org/10.1007/978-3-540-30560-6_8
[10] Kocijan J. et al.: Predictive Control With Gaussian Process Models. IEEE Region Conference EUROCON 2003. IEEE, 2003, 352–56 [https://doi.org/10.1109/EURCON.2003.1248042].
DOI: https://doi.org/10.1109/EURCON.2003.1248042
[11] Kocijan J. et al.: The Concept for Gaussian Process Model Based System Identification Toolbox. Proceedings of the 2007 International Conference on Computer Systems and Technologies (CompSysTech‘07), 1–6 [https://doi.org/10.1145/1330598.1330647].
DOI: https://doi.org/10.1145/1330598.1330647
[12] Korniyenko V. I. et al.: Teoriya system keruvannya. NHU, Dnipro 2017.
[13] Maryuta A. N. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykh fabrik. Nedra, Moscow 1983.
[14] Morkun V., Tron V., Goncharov S.: Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of highenergy ultrasound. Metallurgical and Mining Industry 2, 2015, 31–34.
[15] Morkun V., Morkun N., Pikilnyak A.: Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry 2, 2015, 35–38.
[16] Morkun V., Tron V.: Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry 6, 2014, 4–7.
[17] Morkun V., Morkun N., Tron V.: Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry 5, 2015, 7–11.
[18] Morkun V., Morkun N., Tron V.: Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry 10, 2015, 6–9.
[19] Morkun V., Tcvirkun S.: Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry 5, 2014, 11–14.
[20] Morkun V., Morkun N., Pikilnyak A.: The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics 56, 2015, 340–343.
DOI: https://doi.org/10.1016/j.ultras.2014.08.022
[21] Nesterov G. S.: Tekhnologicheskaya optimizatsiya obogatitel'nykh fabrik. Nedra, Moscow 1976.
[22] Patil, S., Shruti P.: Linear With Polynomial Regression: Overview. International Journal of Applied Research 7(8), 2021, 273–275, [https://doi.org/10.22271/allresearch.2021.v7.i8d.8876].
DOI: https://doi.org/10.22271/allresearch.2021.v7.i8d.8876
[23] Sbárbaro D., Villar R.: Advanced Control and Supervision of Mineral Processing Plants. Springer, 2011.
DOI: https://doi.org/10.1007/978-1-84996-106-6
[24] Svoboda J., Fujita T. Recent developments in magnetic methods of material separation. Minerals Engineering 16(9), 2003, 785–792, [https://doi.org/10.1016/s0892-6875(03)00212-7].
DOI: https://doi.org/10.1016/S0892-6875(03)00212-7
[25] Thompson K. R.: Implementation of Gaussian Process Models for Nonlinear System Identification. 2009. University of Glasgow. Ph.D. thesis [https://www.researchgate.net/publication/258903887_Implementation_of_Gaussian_Process_models_for_nonlinear_system_identification].
[26] Tripathy S. K., Suresh N.: Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral. Advanced Powder Technology 28(3), 2017, 1092–1102 [https://doi.org/10.1016/j.apt.2017.01.018].
DOI: https://doi.org/10.1016/j.apt.2017.01.018
[27] Trombetta E. I. et al.: Nonlinear UGV Identification Methods via the Gaussian Process Regression Model for Control System Design. Applied Sciences 12(22), 2022, 1–13 [https://doi.org/10.3390/app122211769].
DOI: https://doi.org/10.3390/app122211769
[28] Trop A. E. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykhfabrik. Nerda, Moscow 1986.
[29] Vynohradov V. S. et al.: Avtomatizatsiya tekhnologicheskikh protsessov na gornorudnykh predpriyatiyakh. Nedra, Moscow 1984.
[30] Wills B. A.: Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 2011.
[31] Gaussian Process Regression Models – MATLAB and Simulink [https://www.mathworks.com/help/stats/gaussian-process-regression-models.html] (available: 28.02.2024).
[32] Global Iron Ore Production Iron Content 2010-2022 [https://www.statista.com/statistics/589979/metal-content-of-the-global-iron-ore-production] (available: 28.02.2024).
[33] Interactive Visualization of Gaussian Processes [https://www.infinitecuriosity.org/vizgp] (available: 28.02.2024).