CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Olga Chaikovska
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-6489-6040
Oleksandr Ponomarenko
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-3058-7637
Olexandr Dovgan
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-8740-0650
Igor Rokunets
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-8255-6007
Sergii Pavlov
psv@vntu.edu.uaVinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-0051-5560
Olena Kryvoviaz
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0001-5441-1903
Oleg Vlasenko
National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0001-8759-630X
Abstract
Technologies for multichannel electrophysiology are experiencing astounding growth. Numbers of channels reach thousands of recording sites, systems are often combined with electrostimulations and optic stimulations. However, the task of design the cheap, flexible system for freely behaving animals without tethered cable are not solved completely. We propose the system for multichannel electrophysiology for both rats and mice. The system allows to record unit activity and local field potential (LFP) up to 32 channels with different types of electrodes. The system was constructed using Intan technologies RHD 2132 chip. Data acquisition and recordings take place on the DAQ-card, which is placed as a back-pack on the animal. The signal is amplified with amplifier cascade and digitalized with 16-bit ADC. Instrumental filters allow to filter the signal in 0.1–20000 Hz bandwidth. The system is powered from the mini-battery with capacity 340 mA/hr. The system was validated with generated signals, in anaesthetized rat and showed a high quality of recordings.
Keywords:
multichannel electrophysiology, freely behaving rodents, unit activity, local field potentialReferences
Al_Omari A. K., Saied H. F. I., Avrunin O. G.: Analysis of Changes of the Hydraulic Diameter and Determination of the Air Flow Modes in the Nasal Cavity. Image Processing and Communications Challenges 3. Springer, Berlin, Heidelberg 2011, [DOI: 10.1007/978-3-642-23154-4_34].
DOI: https://doi.org/10.1007/978-3-642-23154-4_34
Google Scholar
Alam M., Chen X., Fernandez E.: A low-cost multichannel wireless neural stimulation system for freely roaming animals. Journal of neural engineering 10(6), 2013, 066010.
DOI: https://doi.org/10.1088/1741-2560/10/6/066010
Google Scholar
Bennett C. et al.: Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102(2), 2019, 477–492.
DOI: https://doi.org/10.1016/j.neuron.2019.02.010
Google Scholar
Erickson J. C. et al.: Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system. Physiological measurement 39(3), 2018, 035008.
DOI: https://doi.org/10.1088/1361-6579/aaad51
Google Scholar
Fan D., Rich D., Holtzman T., Ruther P., Dalley J. W., Lopez A., et al.: A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), 2011, e22033, [DOI: 10.1371/journal.pone.0022033].
DOI: https://doi.org/10.1371/journal.pone.0022033
Google Scholar
Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing septoplasty. Rhinology 49(3), 2011, 297–303.
Google Scholar
Ghomashchi A. et al.: A low-cost, open-source, wireless electrophysiology system. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014.
DOI: https://doi.org/10.1109/EMBC.2014.6944288
Google Scholar
Juavinett A. L., Bekheet G., Churchland A. K.: Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, 2019, e47188.
DOI: https://doi.org/10.7554/eLife.47188
Google Scholar
Kinney J. P. et al.: A direct-to-drive neural data acquisition system. Frontiers in neural circuits 9, 2015, 46, [DOI: 10.3389/fncir.2015.00046].
DOI: https://doi.org/10.3389/fncir.2015.00046
Google Scholar
Laxpati N. G. et al.: Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Frontiers in neuroengineering 7, 2014, 40.
DOI: https://doi.org/10.3389/fneng.2014.00040
Google Scholar
Liang B., Ye X.: Towards high-density recording of brain-wide neural activity. Science China Materials 61, 2018, 432–434, [DOI: 10.1007/s40843-017-9175-3].
DOI: https://doi.org/10.1007/s40843-017-9175-3
Google Scholar
Moroz V. M. et al.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42(2), 2010, 110–117.
DOI: https://doi.org/10.1007/s11062-010-9138-4
Google Scholar
Newman J. P. et al.: Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform. Frontiers in neural circuits 6, 2013, 98.
DOI: https://doi.org/10.3389/fncir.2012.00098
Google Scholar
Nosova Ya. V., Faruk K. I., Avrunin O. G.: A tool for researching respiratory and olfaction disorders. Telecommunications and Radio Engineering 77(15), 2018, 1389–1395.
DOI: https://doi.org/10.1615/TelecomRadEng.v77.i15.90
Google Scholar
Rolston J. D., Gross R. E., Potter S. M.: NeuroRighter: closed-loop multielectrode stimulation and recording for freely moving animals and cell cultures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009.
DOI: https://doi.org/10.1109/IEMBS.2009.5333589
Google Scholar
Rotermund D. et al.: Open hardware: Towards a fully-wireless sub-cranial neuro-implant for measuring electrocorticography signals. BioRxiv 036855, 2017.
DOI: https://doi.org/10.1101/036855
Google Scholar
Siegle J. H. et al.: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current opinion in neurobiology 32, 2015, 53–59.
DOI: https://doi.org/10.1016/j.conb.2014.11.004
Google Scholar
Siegle J. H. et al.: Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. Journal of neural engineering 14(4), 2017, 045003.
DOI: https://doi.org/10.1088/1741-2552/aa5eea
Google Scholar
Sikes R. S., Gannon W. L.: Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92(1), 2011, 235–253.
DOI: https://doi.org/10.1644/10-MAMM-F-355.1
Google Scholar
Spivey R. J., Bishop Ch. M.: An implantable instrument for studying the long-term flight biology of migratory birds. Review of Scientific Instruments 85(1), 2014, 014301.
DOI: https://doi.org/10.1063/1.4854635
Google Scholar
Steinmetz N. A. et al.: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current opinion in neurobiology 50, 2018, 92–100.
DOI: https://doi.org/10.1016/j.conb.2018.01.009
Google Scholar
Steinmetz N. et al.: Dataset: simultaneous recording with two Neuropixels Phase3 electrode arrays. CortexLab at UCL, 2016.
Google Scholar
Vlasenko O. et al.: Multichannel system for recording myocardial electrical activity. Information Technology in Medical Diagnostics II: Proceedings of the International Scientific Internet Conference “Computer Graphics and Image Processing" and the XLVIIIth International Scientific and Practical Conference “Application of Lasers in Medicine and Biology". CRC Press, 2019.
Google Scholar
Vyssotski A. L. et al.: Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Journal of neurophysiology 95(2), 2006, 1263–1273.
DOI: https://doi.org/10.1152/jn.00879.2005
Google Scholar
Wagenaar D., DeMarse T. B., Potter S. M.: MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.
Google Scholar
Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. CRC Press, London 2019, [DOI: 10.1201/9780429057618].
DOI: https://doi.org/10.1201/9780429057618
Google Scholar
Woods V. et al.: A low-cost, 61-channel µECoG array for use in rodents. 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
DOI: https://doi.org/10.1109/NER.2015.7146687
Google Scholar
Yüzgeç Ö. et al.: Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology 28(3), 2018, 392–400.
DOI: https://doi.org/10.1016/j.cub.2017.12.049
Google Scholar
RHD2000 Series Digital Electrophysiology Interface Chips RHD2116, RHD2132. Intan Technologies, LLC. http://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
Google Scholar
Authors
Olga ChaikovskaNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-6489-6040
Authors
Oleksandr PonomarenkoNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-3058-7637
Authors
Olexandr DovganNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-8740-0650
Authors
Igor RokunetsNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-8255-6007
Authors
Sergii Pavlovpsv@vntu.edu.ua
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-0051-5560
Authors
Olena KryvoviazNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0001-5441-1903
Authors
Oleg VlasenkoNational Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0001-8759-630X
Statistics
Abstract views: 472PDF downloads: 317
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Vasyl Kukharchuk, Waldemar Wójcik, Sergii Pavlov, Samoil Katsyv, Volodymyr Holodiuk, Oleksandr Reyda, Ainur Kozbakova, Gaukhar Borankulova , FEATURES OF THE ANGULAR SPEED DYNAMIC MEASUREMENTS WITH THE USE OF AN ENCODER , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Liudmyla Shkilniak, Waldemar Wójcik, Sergii Pavlov, Oleg Vlasenko, Tetiana Kanishyna, Irina Khomyuk, Oleh Bezverkhyi, Sofia Dembitska, Orken Mamyrbayev, Aigul Iskakova, EXPERT FUZZY SYSTEMS FOR EVALUATION OF INTENSITY OF REACTIVE EDEMA OF SOFT TISSUES IN PATIENTS WITH DIABETES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Sergii Pavlov, Yurii Bezsmertnyi, Stanislav Iaremyn, Halyna Bezsmertna, SPATIAL PARAMETERS OF STATOGRAMS IN DIAGNOSING PATHOLOGIES OF THE HUMAN LOCOMOTOR SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Nataliia Savina, Olha Romanko, Sergii Pavlov, Volodymyr Lytvynenko, MODERN MANAGEMENT OF NATIONAL COMPETITIVENESS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Sergii Pavlov, Yosyp Saldan, Dina Vovkotrub-Lyahovska, Yuliia Saldan, Valentina Vassilenko, Yuliia Yakusheva, INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Ainur Orazayeva , Jamalbek Tussupov, Waldemar Wójcik, Sergii Pavlov, Gulzira Abdikerimova, Liudmyla Savytska, METHODS FOR DETECTING AND SELECTING AREAS ON TEXTURE BIOMEDICAL IMAGES OF BREAST CANCER , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova, NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Vitaliy Polishchuk, Sergii Pavlov, Sergii Polishchuk, Sergii Shuvalov, Andriy Dalishchuk, Natalia Sachaniuk-Kavets’ka, Kuralay Mukhsina, Abilkaiyr Nazerke, MEDICAL FUZZY-EXPERT SYSTEM FOR PREDICTION OF ENGRAFTMENT DEGREE OF DENTAL IMPLANTS IN PATIENTS WITH CHRONIC LIVER DISEASE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)