KRYTYCZNY PRZEGLĄD MODELI UŻYWANYCH W SYMULACJI NUMERYCZNEJ ELEKTROFILTRÓW

Feng Zhuangbo

fengzb@tju.edu.cn
Western University, Department of Electrical and Computer Engineering; Tianjin University, School of Environmental Science and Engineering (Chiny)

Zhengwei Long


Tianjin University, School of Environmental Science and Engineering (Chiny)

Kazimierz Adamiak


Western University, Department of Electrical and Computer Engineering (Kanada)

Abstrakt

Elektrofiltry są obiektem nieustającej uwagi ze względu na ich wysoką sprawność i niski koszt. Symulacja numeryczna jest bardzo skutecznym, ekonomicznym i elastycznym narzędziem przy projektowaniu przemysłowych elektrofiltrów. Ten artykuł podsumowuje dostępne modele numeryczne do symulacji różnych procesów fizycznych występujących w elektrofiltrach, włączając zjonizowane pole elektryczne, przepływ powietrza, ładowanie cząstek i ich trajektorie. Zostało potwierdzone, że dostępne modele mogą dostarczyć zadowalających wyników nawet używając sprzętu komputerowego dostępnego w zastosowaniach przemysłowych. Wzajemne sprzężenia między różnymi procesami fizycznymi mogą być analizowane podczas symulacji. Ciągle istnieją jednak problemy nierozwiązane, na przykład wybór odpowiedniego modelu turbulencji przeplywu gazu albo kryteriów sprzężeń. Przyszłe badania powinny skoncentrować się na ich rozwiązaniu. Ten przegląd omawia też nowe rodzaje elektrofiltrów zaproponowanych w ostatnich latach, na przykład elektrofiltry oparte na wyładowaniach z barierą dielektryczną albo wspomagane wyładowaniem koronowym filtry włókniste. Te nowe typy elektrofiltrów mają wysoką sprawność i niski pobór energii. Jeśli nawet prawie wszystkie nowe typy elektrofiltrów mogą być modelowane z użyciem istniejących modeli numerycznych, najtrudniejsze jest modelowanie wyładowania z barierą dielektryczną.


Słowa kluczowe:

elektrofiltry, wyładowanie koronowe, trajektoria czastek, symulacja numeryczna

Adamiak K., Atten P.: Numerical simulation of the 2-D gas flow modified by the action of charged fine particles in a single-wire ESP. IEEE Transactions on Dielectrics and Electrical Insulation 6/2009, 608–614, [DOI: 10.1109/TDEI.2009.5128495].
  Google Scholar

Adamiak K., Atten P.: Simulation of corona discharge in point–plane configuration. Journal of Electrostatics 6/2004, 85–98, [DOI: 10.1016/j.elstat.2004.01.021].
  Google Scholar

Adamiak K.: Numerical models in simulating wire-plate electrostatic precipitators: A review. Journal of Electrostatics 8/2013, 673–680, [DOI:10.1016/j.elstat.2013.03.001].
  Google Scholar

Adamiak K.: Simulation of corona in wire-duct electrostatic precipitator by means of the boundary element method. IEEE Transactions on Industry Applications 3/1994, 381–386, [DOI: 10.1109/28.287519].
  Google Scholar

Chen C., Liu W., Li F., Lin C., Liu J., Pei J., Chen, Q.: A hybrid model for investigating transient particle transport in enclosed environments. Building Environment 1/2013, 45–54, [DOI: 10.1016/j.buildenv.2012.12.020].
  Google Scholar

Chen T., Tsai C., Yan J., Tran T., Li N.: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Separation and Purification Technology 11/2014, 27–35, [DOI: 10.1016/j.seppur.2014.08.032].
  Google Scholar

Choi B., Fletcher, C.: Turbulent particle dispersion in an electrostatic precipitator. Applied Mathematical Modeling 12/1998, 1009–1021, [DOI:10.1016/S0307-904X(98)10034-3].
  Google Scholar

Chun Y., Chang J., Berezin A., Mizeraczyk J.: Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 2/2007, 119–124, [DOI:10.1109/TDEI.2007.302879].
  Google Scholar

Delfino J., Sioutas C., Malik, S.: Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives 8/2005, 934–946, [DOI: 10.1289/ehp.7938].
  Google Scholar

Dordizadeh P., Adamiak K., Castle, G.S.P.: Numerical investigation of the formation of Trichel pulses in a needle-plane geometry. Journal of Physics D: Applied Physics 8/2015, 1–13, [DOI:10.1088/0022-3727/48/41/415203].
  Google Scholar

Dramane B., Zouzou N., Moreau E., Touchard, G.: Electrostatic precipitation of submicron particles using a DBD in axisymmetric and planar configurations. IEEE Transactions on Dielectrics and Electrical Insulation 4/2009, 343–351, [DOI: 10.1109/TDEI.2009.4815162].
  Google Scholar

Farnoosh N., Adamiak K., Castle, G.S.P.: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. Journal of Electrostatics 12/2010, 513–522, [DOI: 10.1016/j.elstat.2010.07.002].
  Google Scholar

Farnoosh N., Adamiak K., Castle, G.S.P.: 3-D numerical simulation of particle concentration effect on a single-wire ESP performance for collecting poly-dispersed particles. IEEE Transactions on Dielectrics and Electrical Insulation 2/2011, 211–220, [DOI:10.1109/TDEI.2011.5704512].
  Google Scholar

Farnoosh N., Adamiak K., Castle, G.S.P.: Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 10/2011, 1439–1452, [DOI: 10.1109/TDEI.2011.6032814].
  Google Scholar

Farnoosh N., Adamiak K., Castle, G.S.P.: Three-dimensional analysis of electrohydrodynamic flow in a spiked electrode-plate electrostatic precipitator. Journal of Electrostatics 10/2011, 419–428, [DOI: 10.1016/j.elstat.2011.06.002].
  Google Scholar

Feng Z., Long Z., Mo J.: Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles. Journal of Aerosol science 12/2016, 41–54, [DOI: 10.1016/j.jaerosci.2016.08.012].
  Google Scholar

Feng Z., Long Z., Yu, T.: Filtration characteristics of fibrous filter following an electrostatic precipitator. Journal of Electrostatics 10/2016, 52–62, [DOI:10.1016/j.elstat.2016.07.009].
  Google Scholar

Fuchs N.: On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure and Applied Geophysics 9/1963, 185–193, [DOI: 10.1007/BF01993343].
  Google Scholar

Ghazanchaei M., Adamiak K., Castle G.S.P.: Predicted flow characteristics of a wire-nonparallel plate type electrohydrodynamic gas pump using the Finite Element Method. Journal of Electrostatics 73/2015, 103–111, [DOI: 10.1016/j.elstat.2014.11.003].
  Google Scholar

Guo B., Yu A., Guo J.: Numerical modeling of electrostatic precipitation: Effect of gas temperature. Journal of Aerosol science 11/2014, 102–115, [DOI: 10.1016/j.jaerosci.2014.07.009].
  Google Scholar

Jaworek A., Krupa A., Adamiak K.: Submicron charged dust particle interception by charged drops. IEEE Transactions on Industry Applications 8/2002, 985–991, [DOI: 0.1109/28.720438].
  Google Scholar

Kherbouche F., Benmimoun Y., Tilmatine A., Zouaghi A., Zouzou, N.: Study of a new electrostatic precipitator with asymmetrical wire-to-cylinder cofiguration for cement particles collection. Journal of Electrostatics 10/2016, 7–15, [DOI: 10.1016/j.elstat.2016.07.001].
  Google Scholar

Kihm K.: Effects of nonuniformities on particle transport in electrostatic precipitators. 1987, Ph.D. dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA.
  Google Scholar

Kim H., Han B., Kim Y., Oda T., Won, H.: Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions and carbon fiber ionizer. Indoor Air 10/2013, 369–378, [DOI: 10.1111/ina.12037].
  Google Scholar

Lancereau Q., Roux J., Achard J.: Electrohydrodynamic flow regimes in a cylindrical electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 8/2013, 1409–1420, [DOI:10.1109/TDEI.2013.6571463].
  Google Scholar

Lei H., Wang L., Wu, Z.: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator. Journal of Electrostatics 3/2008, 130–141, [DOI: 10.1016/j.elstat.2007.11.001].
  Google Scholar

Lelieveld J., Evans S., Fnais M., Giannadaki D., Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 9/2015, 367–371, [DOI:10.1038/nature15371].
  Google Scholar

Li Z., Liu Y., Xing Y., Tran T., Le T., Tsai C.: Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environmental Science & Technology 7/2015, 8683–8690, [DOI: 10.1021/acs.est.5b01844].
  Google Scholar

Li Z., Liu Y., Xing Y., Tran T., Le T., Tsai C.: Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environmental Science & Technology, 7/2015, 8683–8690, [DOI: 10.1021/acs.est.5b01844].
  Google Scholar

Liang W., Lin T.: The characteristics of ionic wind and its effect on electrostatic precipitator. Aerosol Science & Technology 2/1994, 330–344, [DOI: 10.1080/02786829408959689].
  Google Scholar

Lin G., Tsai C.: Numerical modeling of nanoparticle collection efficiency of single-stage wire-in-plate electrostatic precipitators. Aerosol Science & Technology 10/2010, 1122–1130, [DOI: 10.1080/02786826.2010.512320].
  Google Scholar

Liu W., Wen J., Chao J., Yin W., Shen C., Lai D., Lin C., Liu J., Sun H., Chen Q.: Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner. Atmospheric Environment 9/2012, 33–44, [DOI: 10.1016/j.atmosenv.2012.03.039].
  Google Scholar

Long Z., Yao Q., Song Q., Li S.: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector. Journal of Electrostatics 11/2010,835–-843, [DOI: 10.1016/j.elstat.2009.07.001].
  Google Scholar

Long Z., Yao Q., Song Q., Li S.: A second-order accurate finite volume method for the computation of electrical conditions inside a wire-plate electrostatic precipitator on unstructured meshes. Journal of Electrostatics 7/2009, 597–604, [DOI: 10.1016/j.elstat.2008.12.006].
  Google Scholar

Long Z., Yao Q.: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. Journal of Aerosol science 7/2010, 702–718, [DOI: 10.1016/j.jaerosci.2010.04.005].
  Google Scholar

Long Z., Yao Q.: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector. Powder Technology 1/2012, 26–37, [DOI: 10.1016/j.powtec.2011.08.045].
  Google Scholar

Lu Q., Yang Z., Zheng C., Li X., Zhao C.: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Advanced Powder Technology, 9/2016, 934–946, [DOI: 10.1016/j.apt.2016.06.021].
  Google Scholar

Mangili A., Gendreau A.: Transmission of infectious diseases during commercial air travel. Lancet 3/2005, 989–996, [DOI:10.1016/S0140-6736(05)71089-8].
  Google Scholar

Marlow W., Brock J.: Unipolar charging of small aerosol particles. Journal of Colloid and Interface Science 1/1975, 32–38, [DOI: 10.1016/0021-9797(75)90250-7].
  Google Scholar

Neimarlija N., Demirdzic I., Muzaferija, S.: Finite volume method for calculation of electrostatic fields in electrostatic precipitators. Journal of Electrostatics 2/2009, 37–47, [DOI: 10.1016/j.elstat.2008.10.007].
  Google Scholar

Niewulis A., Berendt A., Podlinski J., Mizeraczyk, J.: Electrohydrodynamic flow patterns and collection efficiency in narrow wire-cylinder type electrostatic precipitator. Journal of Electrostatics, 8/2013, 808–814, [DOI:10.1016/j.elstat.2013.02.002].
  Google Scholar

Niewulis A., Podlinski J., Mizeraczyk, J.: Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode. Journal of Electrostatics, 5/2009, 123–127, [DOI:10.1016/j.elstat.2009.01.001].
  Google Scholar

Park, S., Kim, S.: Effects of electrohydrodynamic flow and turbulent diffusion on collection efficiency of an electrostatic precipitator with cavity walls. Aerosol Science & Technology 1/2003, 574–586, [DOI:10.1080/02786820300928].
  Google Scholar

Podlinski J., Dekowski J., Mizeraczyk J., Brocilo D., Chang J.: Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. Journal of Electrostatics 3/2006, 259–262, [DOI: 10.1016/j.elstat.2005.06.006].
  Google Scholar

Sattari P., Adamiak K., Castle, G.S.P.: Numerical simulation of Trichel pulses in a negative corona discharge in air. IEEE Transactions on Industry Applications 77/2011, 1935–1943, [DOI: 10.1109/TIA.2011.2156752].
  Google Scholar

Schmid H., Stolz S., Buggish, H.: On the modeling of the electro–hydrodynamic flow fields in electrostatic precipitators. Flow, Turbulence and Combustion 1/2002, 63–89, [DOI:10.1023/A:1015666116174].
  Google Scholar

Soldati A., Andreussi P., Banerjee S.: Direct simulation of turbulent particle transport in electrostatic precipitators. AIChE Journal 12/1993, 1910–1919, [DOI: 10.1002/aic.690391203].
  Google Scholar

Soldati A., Casal M., Andreussi P., Banerjee, S.: Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. AIChE Journal 6/1997, 1403–1413, [DOI: 10.1002/aic.690430604].
  Google Scholar

Soldati A.: Influence of large-scale streamwise vortical EHD flows on wall turbulence. International Journal of Heat and Fluid Flow 8/2002, 441–443, [DOI: 10.1016/S0142-727X(01)00154-0].
  Google Scholar

Soldati A.: On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. Journal of Aerosol Scienc 3/2000, 293–305, [DOI: 10.1016/S0021-8502(99)00055-5].
  Google Scholar

Tu Y., Song Q., Tu G., Yao. Q.: Experimental research on particulate collection performance by perforated plate in hybrid particulate collector. Proc. of the CSEE 6/2013, 51–56, [DOI: 0258-8013 (2013) 17-0051-06].
  Google Scholar

Wen T., Krichtafovitch I., Mamishev, A.: Numerical study of electrostatic precipitators with novel particle-trapping mechanism. Journal of Aerosol science 5/2016, 95–103, [DOI: 10.1016/j.jaerosci.2016.02.001].
  Google Scholar

Wu Z., Colbeck I., Zhang G.: Deposition of particles on a single cylinder by a Coulombic force and direct interception. Aerosol Science & Technology 11/1993, 40–50, [DOI: 10.1080/02786829308959619].
  Google Scholar

Wu Z., Colbeck I., Zhang G.: The deposition of particles from an air flow on a single cylindrical fiber in a uniform electrical field. Aerosol Science & Technology 1/1999, 62–70, [DOI: 10.1080/027868299304886].
  Google Scholar

Xing M., Guo B., Yu A.: Effect of electrohydrodynamic secondary flow on the particle collection in a wire-plate electrostatic precipitator. CSIRO, Melbourne-Australia, 10–12.
  Google Scholar

Zhai Z., Zhang Z., Zhang W., Chen, Q.: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part-1: summary of prevent turbulence models. HVAC&R Research 11/2007, 853–870, [DOI:10.1080/10789669.2007.10391459].
  Google Scholar

Zhang X., Wang L., Zhu, K: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator. Journal of Electrostatics 9/2005, 1057–1071, [DOI: 10.1016/j.elstat.2005.02.002].
  Google Scholar

Zhang Z., Chen, Q.: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment 8/2007, 5236–5248, [DOI: 10.1016/j.atmosenv.2006.05.086].
  Google Scholar

Zhang Z., Zhang W., Zhai Z., Chen, Q.: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part-2: comparison with experimental data from literature. HVAC&R Research 11/2007, 871–886, [DOI:10.1080/10789669.2007.10391460].
  Google Scholar

Zhao B., Chen C., Yang X., Lai, A: Comparison of three approaches to model particle penetration coefficient through a single straight crack in a building envelope. Aerosol Science & Technology 2/2010, 405–416, [DOI: 10.1080/02786821003689937].
  Google Scholar

Zhao L., Adamiak K.: Effects of EHD and external air flows on electric corona discharge in point-plane/mesh configurations. IEEE Transactions on Industry Applications 2/2009, 16–21, [DOI: 10.1109/TIA.2008.2009389].
  Google Scholar

Zhao L., Adamiak K.: EHD flow in air produced by electric corona discharge in pin–plate configuration. Journal of Electrostatics 3/2005, 337–350, [DOI: 10.1016/j.elstat.2004.06.003].
  Google Scholar

Zhao L., Adamiak K.: Numerical simulation of the effect of EHD flow on corona discharge in compressed air. IEEE Transactions on Industry Applications 2/2013, 298–304, [DOI: 10.1109/TIA.2012.2228832].
  Google Scholar

Zhao L., Adamiak K.: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator. IEEE Transactions on Industry Applications 6/2008, 683–691, [DOI: 10.1109/TIA.2008.921453].
  Google Scholar

Zouaghi A., Zouzou N., Mekhaldi A., Gouri R.: Submicron particles trajectory and collection efficiency in a miniature planar DBD-ESP: Theoretical model and experimental validation. Journal of Electrostatics 8/2016, 7–15, [DOI: 10.1016/j.elstat.2016.05.004].
  Google Scholar


Opublikowane
2016-12-22

Cited By / Share

Zhuangbo, F. ., Long, Z. ., & Adamiak, K. . (2016). KRYTYCZNY PRZEGLĄD MODELI UŻYWANYCH W SYMULACJI NUMERYCZNEJ ELEKTROFILTRÓW. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 6(4), 9–17. https://doi.org/10.5604/01.3001.0009.5182

Autorzy

Feng Zhuangbo 
fengzb@tju.edu.cn
Western University, Department of Electrical and Computer Engineering; Tianjin University, School of Environmental Science and Engineering Chiny

Autorzy

Zhengwei Long 

Tianjin University, School of Environmental Science and Engineering Chiny

Autorzy

Kazimierz Adamiak 

Western University, Department of Electrical and Computer Engineering Kanada

Statystyki

Abstract views: 329
PDF downloads: 133