PORÓWNANIE SKUTECZNOŚCI ALGORYTMÓW UCZENIA MASZYNOWEGO DLA KONSERWACJI PREDYKCYJNEJ
Jakub Gęca
j.geca@pollub.plLublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland (Polska)
https://orcid.org/0000-0003-0610-2975
Abstrakt
Skutki związane z awariami oraz niezaplanowaną konserwacją to powody, dla których od lat inżynierowie próbują zwiększyć niezawodność osprzętu przemysłowego. W nowoczesnych rozwiązaniach obok tradycyjnych metod stosowana jest również tzw. konserwacja predykcyjna, która pozwala przewidywać awarie i alarmować o możliwości ich powstawania. W niniejszej pracy przedstawiono zestawienie algorytmów uczenia maszynowego, które można zastosować w konserwacji predykcyjnej oraz porównanie ich skuteczności. Analizy dokonano na podstawie zbioru danych Azure AI Gallery udostępnionych przez firmę Microsoft. Praca przedstawia kompleksowe podejście do analizowanego zagadnienia uwzględniające wydobywanie cech charakterystycznych, wstępne przygotowanie danych, zastosowanie technik redukcji wymiarowości, a także dostrajanie parametrów poszczególnych modeli w celu uzyskania najwyższej możliwej skuteczności. Przeprowadzone badania pozwoliły wskazać najlepszy algorytm, który uzyskał dokładność na poziomie 99,92%, spośród ponad 122 tys. rekordów danych testowych. Na podstawie tego można stwierdzić, że konserwacja predykcyjna prowadzona w oparciu o uczenie maszynowe stanowi przyszłość w zakresie podniesienia niezawodności maszyn w przemyśle.
Słowa kluczowe:
uczenie maszynowe, losowy las, konserwacja predykcyjna, sieci neuronoweBibliografia
Binding A., et al.: Machine Learning Predictive Maintenance on Data in the Wild. IEEE 5th World Forum on Internet of Things (Wf-Iot), 2019, 507–512.
DOI: https://doi.org/10.1109/WF-IoT.2019.8767312
Google Scholar
Burnaev E.: On Construction of Early Warning Systems for Predictive Maintenance in Aerospace Industry. Journal of Communications Technology and Electronics 64/2019, 1473–1484, [https://doi.org/10.1134/S1064226919120027].
DOI: https://doi.org/10.1134/S1064226919120027
Google Scholar
Campos J. R., et al.: Exploratory Study of Machine Learning Techniques for Supporting Failure Prediction. 14th European Dependable Computing Conference (EDCC), 2018, 9–16, [https://doi.org/10.1109/EDCC.2018.00014].
DOI: https://doi.org/10.1109/EDCC.2018.00014
Google Scholar
Carvalho T.P., et al.: A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Computers & Industrial Engineering 137/2019, 106024, [https://doi.org/10.1016/j.cie.2019.106024].
DOI: https://doi.org/10.1016/j.cie.2019.106024
Google Scholar
Chigurupati A., et al.: Predicting Hardware Failure Using Machine Learning. 2016 Annual Reliability and Maintainability Symposium (RAMS), 2016, 1–6, [https://doi.org/10.1109/RAMS.2016.7448033].
DOI: https://doi.org/10.1109/RAMS.2016.7448033
Google Scholar
Cho S., et al.: A Hybrid Machine Learning Approach for Predictive Maintenance in Smart Factories of the Future. Advances in Production Management Systems: Smart Manufacturing for Industry 4.0 – APMS 2018, 536/2018, 311–317, [https://doi.org/10.1007/978-3-319-99707-0_39].
DOI: https://doi.org/10.1007/978-3-319-99707-0_39
Google Scholar
Corazza A., et al.: A Machine Learning Approach for Predictive Maintenance for Mobile Phones Service Providers. Advances on P2P, Parallel, Grid, Cloud and Internet Computing 1/2017, 717–726, [https://doi.org/10.1007/978-3-319-49109–7_69].
DOI: https://doi.org/10.1007/978-3-319-49109-7_69
Google Scholar
Dzierżak R.: Comparison of the Influence of Standardization and Normalization of Data on the Effectiveness of Spongy Tissue Texture Classification. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9/2019, 66–69, [https://doi.org/10.35784/iapgos.62].
DOI: https://doi.org/10.35784/iapgos.62
Google Scholar
Garcia S., et al.: Data Preprocessing in Data Mining. Data Preprocessing in Data Mining 72/2015, 1–320, [https://doi.org/10.1007/978-3-319-10247-4].
DOI: https://doi.org/10.1007/978-3-319-10247-4
Google Scholar
Gutschi C., et al.: Log-Based Predictive Maintenance in Discrete Parts Manufacturing. 12th Cirp Conference on Intelligent Computation in Manufacturing Eng. 79/2019, 528–533,[https://doi.org/10.1016/j.procir.2019.02.098].
DOI: https://doi.org/10.1016/j.procir.2019.02.098
Google Scholar
Jiang R., et al.: Failure Prediction Method of Gearbox Based on Bp Neural Network with Genetic Optimization Algorithm. International Conference on Renewable Power Generation – RPG 2015, 2015, 1–3, [https://doi.org/10.1049/cp.2015.0444].
DOI: https://doi.org/10.1049/cp.2015.0444
Google Scholar
Kanawaday A., Sane A.: Machine Learning for Predictive Maintenance of Industrial Machines Using Iot Sensor Data. 2017, 87–90, [https://doi.org/10.1109/ICSESS.2017.8342870].
DOI: https://doi.org/10.1109/ICSESS.2017.8342870
Google Scholar
Khalil M.: Failure Prediction of Pv Inverters under Operational Stresses. IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, 1–5, [https://doi.org/10.1109/EEEIC.2019.8783241].
DOI: https://doi.org/10.1109/EEEIC.2019.8783241
Google Scholar
Kolokas N., et al.: Forecasting Faults of Industrial Equipment Using Machine Learning Classifiers. 2018 Innovations in Intelligent Systems and Applications (Inista), 2018, 6.
Google Scholar
Korvesis P., et al.: Predictive Maintenance in Aviation: Failure Prediction from Post-Flight Reports. IEEE 34th International Conference on Data Engineering (ICDE), 2018, 1414–1422, [https://doi.org/10.1109/ICDE.2018.00160].
DOI: https://doi.org/10.1109/ICDE.2018.00160
Google Scholar
Lemaître G., Nogueira F., Aridas C.: Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. 18/2016.
Google Scholar
Masani K.I., et al.: Predictive Maintenance and Monitoring of Industrial Machine Using Machine Learning. Scalable Computing-Practice and Experience 20(4)/2019, 663–668, [https://doi.org/10.12694/scpe.v20i4.1585].
DOI: https://doi.org/10.12694/scpe.v20i4.1585
Google Scholar
Mishra K., et al.: Failure Prediction Model for Predictive Maintenance. 7th IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 2018, 72–75, [https://doi.org/10.1109/ccem.2018.00019].
DOI: https://doi.org/10.1109/CCEM.2018.00019
Google Scholar
Parisi L., Ravi Chandran N.: Genetic Algorithms and Unsupervised Machine Learning for Predicting Robotic Manipulation Failures for Force-Sensitive Tasks. 4th International Conference on Control, Automation and Robotics (ICCAR), 2018, 22–25, [https://doi.org/10.1109/ICCAR.2018.8384638].
DOI: https://doi.org/10.1109/ICCAR.2018.8384638
Google Scholar
Rosenblatt F.: The Perceptron, a Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical Laboratory, 1957. Report: Cornell Aeronautical Laboratory.
Google Scholar
Rymarczyk T., et al.: Analysis of Data from Measuring Sensors for Prediction in Production Process Control Systems. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(4)/2019, [https://doi.org/10.35784/iapgos.570].
DOI: https://doi.org/10.35784/iapgos.570
Google Scholar
Schaub M.: Data-Based Prediction of Soot Emissions for Transient Engine Operation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9(4)/2019, [https://doi.org/10.35784/iapgos.29].
DOI: https://doi.org/10.35784/iapgos.29
Google Scholar
Suchatpong T., Bhumkittipich K.: Hard Disk Drive Failure Mode Prediction Based on Industrial Standard Using Decision Tree Learning. 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014, 1–4, [https://doi.org/10.1109/ECTICon.2014.6839839].
DOI: https://doi.org/10.1109/ECTICon.2014.6839839
Google Scholar
Susto G.A., et al.: Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics 11(3)/2015, 812–820, [https://doi.org/10.1109/TII.2014.2349359].
DOI: https://doi.org/10.1109/TII.2014.2349359
Google Scholar
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Implementation-Guide-Data-Sets-1 (available: 24.04.2020).
Google Scholar
Autorzy
Jakub Gęcaj.geca@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland Polska
https://orcid.org/0000-0003-0610-2975
Statystyki
Abstract views: 784PDF downloads: 625
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.