PRZEGLĄD METOD SELEKCJI CECH UŻYWANYCH W DIAGNOSTYCE CZERNIAKA
Magdalena Michalska
mmagamichalska@gmail.comPolitechnika Lubelska, Katedra Elektroniki i Technik Informacyjnych (Polska)
http://orcid.org/0000-0002-0874-3285
Abstrakt
Obecnie stosuje się wiele metod selekcji cech. Cieszą się coraz większym zainteresowaniem badaczy. Oczywiście niektóre metody są stosowane częściej. W artykule zostały opisane podstawy działania algorytmów opartych na selekcji. Metody selekcji cech należące dzielą się na trzy kategorie: metody filtrowe, metody opakowujące, metody wbudowane. Zwrócono szczególnie uwagę na znalezienie przykładów zastosowań opisanych metod w diagnostyce czerniaka skóry.
Słowa kluczowe:
metody selekcji cech, metody filtrowania, metody opakowujące, wbudowane metodyBibliografia
Alquran H., Qasmieh I. A., Alqudah A. M., Alhammouri S., Alawneh E., Abughazaleh A., Hasayen F.: The melanoma skin cancer detection and classification using support vector machine. IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 2017, 1–5 [http://doi.org/10.1109/AEECT.2017.8257738].
DOI: https://doi.org/10.1109/AEECT.2017.8257738
Google Scholar
Al-Sahaf H., Al-Sahaf A., Xue B., Johnston M., Zhang M.: Automatically Evolving Rotation-Invariant Texture Image Descriptors by Genetic Programming. IEEE Transactions on Evolutionary Computation 21(1)/2017, 83–101.
DOI: https://doi.org/10.1109/TEVC.2016.2577548
Google Scholar
Andersen S. W., Runger G. C.: Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics) 61(2)/2012, 327–344.
DOI: https://doi.org/10.1111/j.1467-9876.2011.01032.x
Google Scholar
Bolón-Canedo V., Remeseiro B.: Feature selection in image analysis: a survey. Artif Intell Rev 53/2020, 2905–2931.
DOI: https://doi.org/10.1007/s10462-019-09750-3
Google Scholar
Celebi M. E., Aslandogan Y. A., Stoecker W. V., Iyatomi H., Oka H., Chen X.: Unsupervised border detection in dermoscopy images. Skin Res Technol. 13/2007, 1–9.
DOI: https://doi.org/10.1111/j.1600-0846.2007.00251.x
Google Scholar
Chmielnicki W.: Efektywne metody selekcji cech i rozwiązywania problemu wieloklasowego w nadzorowanej klasyfikacji danych. Rozprawa doktorska. Instytut Podstawowych Problemów Techniki PAN, Kraków 2012.
Google Scholar
Dash M., Liu H.: Consistency-based search in feature selection. Artificial Intelligence 151(1–2)/2003, 155–176 [http://doi.org/10.1016/S0004-3702(03)00079-1].
DOI: https://doi.org/10.1016/S0004-3702(03)00079-1
Google Scholar
Doukas C., Stagkopoulos P., Kiranoudis C. T., Maglogiannis I.: Automated skin lesion assessment using mobile technologies and cloud platforms. Engineering in Medicine and Biology Society (EMBC) – Annual International Conference of the IEEE, 2012.
DOI: https://doi.org/10.1109/EMBC.2012.6346458
Google Scholar
Ercal F., Chawla A., Stoecker W.V., Lee H., Moss R. H.: Neural Network diagnosis of malignant melanoma from color images. IEEE Transactions on Biomedical Engineering 41(9)/1994, 837–845.
DOI: https://doi.org/10.1109/10.312091
Google Scholar
Gościk, J., Łukaszuk, T.: Application of the recursive feature elimination and the relaxed linear separability feature selection algorithms to gene expression data analysis. Advances in Computer Science Research 10/2013, 39–52.
Google Scholar
Guyon I., Elisseeff A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3/2003, 1157–1182.
Google Scholar
Hall M., Smith Lloyd A.: Practical feature subset selection for machine learning. Springer 1998.
Google Scholar
Hall M.: Correlation-based feature selection for machine learning. Department of Computer Science 19/2000.
Google Scholar
https://moredvikas.wordpress.com/2018/10/09/machine-learning-introduction-to-feature-selection-variable-selection-or-attribute-selection-or-dimensionality-reduction/
Google Scholar
Huang J., Ling C. X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowledge Data Eng. 17(3)/2005, 299–310.
DOI: https://doi.org/10.1109/TKDE.2005.50
Google Scholar
Keerthi Vasan K., Surendiran B.,: Dimensionality reduction using Principal Component Analysis for network intrusion detection. Perspectives in Science 8/2016, 510–512.
DOI: https://doi.org/10.1016/j.pisc.2016.05.010
Google Scholar
Khan M. A., Tallha A., Muhammad S., Aamir S., Khursheed A., Musaed A., Syed I. H., Abdualziz A.: An implementation of normal distribution based segmentation and entropy-controlled features selection for skin lesion detection and classification. BMC Cancer 18(1)/2018, 638.
DOI: https://doi.org/10.1186/s12885-018-4465-8
Google Scholar
Kira K., Rendell L. A.: A practical approach to feature selection. Machine Learning Proceedings 1992, 249–256.
DOI: https://doi.org/10.1016/B978-1-55860-247-2.50037-1
Google Scholar
Kononenko I.: Estimating attributes: Analysis and extensions of Relief. L. De Raedt, & F. Bergadano (Eds.): Machine Learning: ECML-94 1994, 171–182.
DOI: https://doi.org/10.1007/3-540-57868-4_57
Google Scholar
Kuo B. C., Ho H. H., Li C. H., Hung C. C., Taur J. S.: A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(1)/2014, 317–326.
DOI: https://doi.org/10.1109/JSTARS.2013.2262926
Google Scholar
Liu H., Yu L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on knowledge and data engineering 17(4)/2005, 491–502.
DOI: https://doi.org/10.1109/TKDE.2005.66
Google Scholar
Neshatian K., Zhang M., Andreae P.: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming. IEEE Trans. Evol. Comput. 16(5)/2012, 645–661.
DOI: https://doi.org/10.1109/TEVC.2011.2166158
Google Scholar
Oliveira R. B., Pereira A. S., Tavaresa J. M. R. S.: Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation. JMRS Tavares – Computer methods and programs Computer Methods and Programs in Biomedicine 149/2017, 43–53.
Google Scholar
Oliveira R. B., Pereira A. S., Tavaresa J. M. R. S.: Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation. JMRS Tavares – Computer methods and programs Computer Methods and Programs in Biomedicine 149/2017, 43–53.
DOI: https://doi.org/10.1016/j.cmpb.2017.07.009
Google Scholar
Pal M., Foody G. M.,: Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens 48(5)/2010, 2297–2307.
DOI: https://doi.org/10.1109/TGRS.2009.2039484
Google Scholar
Qi C., Zhou Z., Sun Y., Song H., Hu L., Wang Q.: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification. Neurocomputing 220/2017, 181–190.
DOI: https://doi.org/10.1016/j.neucom.2016.05.103
Google Scholar
Ramezani M, Karimian A, Moallem P.: Automatic Detection of Malignant Melanoma using Macroscopic Images. J Med Signals Sens. 4(4)/2014, 281–290.
DOI: https://doi.org/10.4103/2228-7477.144052
Google Scholar
Robnik-Šikonja M., Kononenko I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning 53(1–2)/2003, 23–69.
DOI: https://doi.org/10.1023/A:1025667309714
Google Scholar
Sadri A. R., Azarianpour S., Zekri M., Celebi M. E., Sadri S.: WN-based approach to melanoma diagnosis from dermoscopy images. IET Image Process. 11(7)/2017, 475–482.
DOI: https://doi.org/10.1049/iet-ipr.2016.0681
Google Scholar
Shahid M., Khan S.: Dermoscopy Images classification based on color, texture and shape features using SVM. The 3rd International Conference on Next Generation Computing (INC GC2017b) 2017, 243–245.
Google Scholar
Stapor K., Automatyczna klasyfikacja obiektów. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2005.
Google Scholar
UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/datasets.html].
Google Scholar
Ul Ain B., Xue B., Al-Sahaf H., Zhang M.: Genetic programming for feature selection and feature construction in skin cancer image classification. Pacific Rim International Conference on Artificial Intelligence, Springer 2018, 732–745.
DOI: https://doi.org/10.1007/978-3-319-97304-3_56
Google Scholar
Witten I. H., Frank E., Hall M. A.: Data mining: Practical machine learning tools and techniques. Morgan Kaufmann 2011.
Google Scholar
Xie F., Fan H., Li Y., Jiang Z., Meng R., Bovik A.: Melanoma classification on dermoscopy images using a neural network ensemble model, IEEE Transactions on Medical Imaging 36(3)/2017, 849–858.
DOI: https://doi.org/10.1109/TMI.2016.2633551
Google Scholar
Xue B., Zhang M., Browne W. N., Yao X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4)/2016, 606–626.
DOI: https://doi.org/10.1109/TEVC.2015.2504420
Google Scholar
Yu J., Almal A. A., Dhanasekaran S. M.,Ghosh D., Worzel W. P., Chinnaiyan A., M.: Feature selection and molecular classification of cancer using genetic programming. Neoplasia 9(4)/2007, 292–303.
DOI: https://doi.org/10.1593/neo.07121
Google Scholar
Zagrouba E., Barhoumi W.: An accelerated system for melanoma diagnosis based on subset feature selection. Journal of Computing and Information Technology – CIT 13(1)/2005, 69–82.
DOI: https://doi.org/10.2498/cit.2005.01.06
Google Scholar
Zhou X., Wang J. J.: Feature selection for image classification based on a new ranking criterion. Journal of Computer and Communications 3/2015, 74–79 [http://doi.org/10.4236/jcc.2015.33013].
DOI: https://doi.org/10.4236/jcc.2015.33013
Google Scholar
Autorzy
Magdalena Michalskammagamichalska@gmail.com
Politechnika Lubelska, Katedra Elektroniki i Technik Informacyjnych Polska
http://orcid.org/0000-0002-0874-3285
Statystyki
Abstract views: 465PDF downloads: 236
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.