ALGORYTMY BILANSOWANIA ORAZ HIERARCHIZACJI MACIERZY WEDŁUG ICH TYPU I ZŁOŻONOŚCI
Yuriy Khanas
Politechnika Lwowska (Ukraina)
http://orcid.org/0000-0001-6496-5782
Michał Borecki
michal.borecki@ee.pw.edu.plPolitechnika Warszawska (Polska)
http://orcid.org/0000-0001-8907-6906
Abstrakt
Artykuł przedstawia autorskie algorytmy bilansowania macierzy. Każdy rozdział składa się z kilku algorytmów, które są rozdzielone na różne poziomy. Te poziomy są uporządkowane w zależności od chronologii ich stworzenia. Podobnie chronologia ma wpływ na złożoność algorytmów zbilansowania, w związku z tym można stwierdzać, że algorytmy są uszeregowana według stopnia złożoności. Niniejszy artykuł jest pierwszym etapem pokazującym sposób zbilansowania pewnego poziomu macierzy, natomiast kolejnym etapem będzie efekt praktyczny.
Słowa kluczowe:
bilansowanie macierzy, rozdzielone sektory macierzy, cały sektor macierzy, granica wirtualna macierzy, wyznaczona granica macierzyBibliografia
Agarwal S.: Symmetric Key Encryption using Iterated Fractal Functions. International Journal of Computer Network and Information Security 9(4)/2019, 1–9.
DOI: https://doi.org/10.5815/ijcnis.2017.04.01
Google Scholar
Anisimov A. V., Kulyabko P. P.: Information systems and databases: A textbook for students of the faculty computer science and cybernetics. Kyiv 2017.
Google Scholar
Bogdanov A., Khovratovich D., Rechberger D.: Biclique Cryptanalysis of the Full AES. Advances in Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science 7073. Springer, Berlin 2011.
DOI: https://doi.org/10.1007/978-3-642-25385-0_19
Google Scholar
Borecki M.: Risk level analysis in the selected (initial) stage of the project life cycle. Management and production engineering review 11(4)/2020, 104–112.
Google Scholar
Borecki M., Ciuba M., Kharchenko Y., Khanas Y.: Main aspects influencing the evaluation of atmospheric overvoltages in high-voltage networks. Bull. Pol. Ac.: Tech 69(1)/ 2021, 1–8.
Google Scholar
Buryachok V. L.: The choice of a rational method of generating passwords among many existing. Information security 25(1)/2019, 59–64.
Google Scholar
Buryachok V. L.: Generate a password for wireless networks using variable rule of complication. Information protection 21(1)/2019, 52–59.
DOI: https://doi.org/10.18372/2410-7840.21.13547
Google Scholar
Hughes J., Cybenko G.: Quantitative Metrics and Risk Assessment: The Three Tenets Model of Cybersecurity. Technology Innovation Management Review 2013, 15–24.
DOI: https://doi.org/10.22215/timreview712
Google Scholar
Isa M. A. M., Hashim H., Ab Manan J. L., Adnan S. F. S., Mhmod R.: RF simulator for cryptographic protocol. IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2014, 518–523.
DOI: https://doi.org/10.1109/ICCSCE.2014.7072773
Google Scholar
Josefsson S., Leonard S.: Textual Encodings of PKIX, PKCS, and CMS Structures. Internet Engineering Task Force April 2015.
DOI: https://doi.org/10.17487/RFC7468
Google Scholar
Khanas, Y., Borecki, M.: Research on the use of algorithms for matrix transformations for encrypting text information. Security and Privacy 3(6)/2020, 1–13.
DOI: https://doi.org/10.1002/spy2.108
Google Scholar
Khanas Y., Ivanciv R., Litvinko S.: The algorithm for minimizing matrices in the given direction of reduction and the rules for their restoration. Visnyk of the National University "Lviv Polytechnic" 882/2017, 12–17.
Google Scholar
Khanas Y., Ivanciv R.: Application Mirroring of Matrices to Prevent Excessive Reduction. Perspective technologies and design methods of MEMST (MEMSTECH 2016), Lviv-Polyana 2016, 143–145.
DOI: https://doi.org/10.1109/MEMSTECH.2016.7507535
Google Scholar
Krasilenko V. G.: Multifunctional parametric matrix-algebraic models (MAM) of cryptographic transformations (CP) with modular operations and their modeling. 72 NPK – conference materials, Odessa 2017, 123–128.
Google Scholar
Krasilenko V. G.: Improvement and modeling of electronic digital signatures of matrix type for textographic documents. Proceedings of the VI International Scientific and Practical Conference "Information Control Systems and Technologies" (IUST-Odessa-2017), Odessa 2017.
Google Scholar
Krasylenko V. G., Nikitovich D. V., Yatskovskaya R. O., Yatskovsky V. I.: Simulation of advanced multi-step 2D RSA algorithms for cryptographic transformations and blind electronic digital signature. Information processing systems 1(156)/2019, 92–100.
Google Scholar
Leurent G., Peyrin T.: SHA-1 is a Shambles. First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust. Real World Crypto 2020.
Google Scholar
Lobur M. V., Ivantsiv R. D., Kolesnyk K. K., Khanas Y. Y.: Development of an algorithm for reducing matrices depending on their size and content. Scientific and Technical Journal "Instrumentation Technology" 2/2016, 29–31.
Google Scholar
Nazarkevich M. A., Dronyuk I. M., Troyan O. A., Tomashchuk T. Yu.: Development of a method of document protection by latent elements based on fractals. Information protection 17(1)/2015, 21–26.
Google Scholar
Nikonov V. G., Zobov A. I.: On the possibility of using fractal models in the construction of information security systems. Computational nanotechnology 1/2017, 39–49.
Google Scholar
Ortiz S. M., Parra O., Miguel J., Espitia R.: Encryption through the use of fractals. International Journal of Mathematical Analysis 11(21)/2017, 1029–1040.
DOI: https://doi.org/10.12988/ijma.2017.710139
Google Scholar
Wenliang Du: Computer Security: A Hands-on Approach. CreateSpace Independent Publishing Platform, 2017.
Google Scholar
Autorzy
Michał Boreckimichal.borecki@ee.pw.edu.pl
Politechnika Warszawska Polska
http://orcid.org/0000-0001-8907-6906
Statystyki
Abstract views: 266PDF downloads: 161
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.