PRZEGLĄD OBECNIE WYKORZYSTYWANYCH IZOLOWANYCH PRZETWORNIC PRĄDU STAŁEGO
Damian Dobrzański
d.dobrzanski@pollub.plLublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Electrical Machines and Drives (Polska)
http://orcid.org/0000-0003-2689-6186
Abstrakt
W artykule przedstawiono przegląd najpopularniejszych topologii izolowanych przetwornic prądu stałego. Zaprezentowane rozwiązania
podzielone zostały na dwie główne grupy. Pierwsza- jednokierunkowe izolowane przetwornice prądu stałego pozwalające na osiągnięcie miękkiej
komutacji, druga- dwukierunkowe izolowane przetwornice prądu stałego osiągające posiadające możliwość pracy w trybie miękkiego przełączania.
Zebrane wyniki badań, symulacji oraz testów poszczególnych rozwiązań przeprowadzanych przy odmiennych założeniach pozwoliły na opracowanie
podsumowania. Sformułowane wnioski mogą definiować kierunek rozwoju przetwornic rezonansowych oraz swoisty punkt wyjścia do dalszych badań nad
algorytmami sterowania jak i poprawą efektywności przetwornic prądu stałego.
Słowa kluczowe:
przetwornice DC-DC, miękka komutacja, ładowarki pojazdów elektrycznych, przetwornice rezonansowe LLCBibliografia
Amani D., Beiranvand R., Zolghadri M.: A new high step-up interleaved LLC converter. 12th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2021 [http://doi.org/10.1109/PEDSTC52094.2021.9405945].
DOI: https://doi.org/10.1109/PEDSTC52094.2021.9405945
Google Scholar
Arazi M., Payman A., Camara M. B., Dakyo B.: Control of isolated DC/DC resonant converters for energy sharing between battery and supercapacitors. 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018 [http://doi.org/10.1109/ICRERA.2018.8566965].
DOI: https://doi.org/10.1109/ICRERA.2018.8566965
Google Scholar
Assem P., Pilawa-Podgurski R.: Quad Gate-Driver Controller with Start-Up and Shutdown for Cascaded Resonant Switched-Capacitor Converter. IEEE Custom Integrated Circuits Conference (CICC), 2021 [http://doi.org/10.1109/CICC51472.2021.9431571].
DOI: https://doi.org/10.1109/CICC51472.2021.9431571
Google Scholar
Barzkar A., Tahami F., Barzkar A.: A Hybrid Control Approach for LLC Resonant Converter. 12th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2021 [http://doi.org/10.1109/PEDSTC52094.2021.9405962]
DOI: https://doi.org/10.1109/PEDSTC52094.2021.9405962
Google Scholar
Chen S. J, Yang S. P, Huang Ch. M., Chen Y. H.: High Step-Up Interleaved Converter With Three-Winding Coupled Inductors and Voltage Multiplier Cells. IEEE International Conference on Industrial Technology (ICIT), 2019 [http://doi.org/10.1109/ICIT.2019.8755219].
DOI: https://doi.org/10.1109/ICIT.2019.8755219
Google Scholar
Dąbała K., Kaźmierkowski M. P.: Converter-Fed Electric Vehicle (Car) Drives – A Critical Review. Przegląd Elektrotechniczny 9(19), 2019 [http://doi.org/10.15199/48.2019.09.01].
DOI: https://doi.org/10.15199/48.2019.09.01
Google Scholar
Dewani R., Rakesh R., Gopakumar K., Loganathan U., Zieliński D., Franquelo L. G.: Suppression of Lower Order Harmonics for the Full Modulation Range for a Two-Level Inverter-Fed IM Drive With a Switched-Capacitive Filter Technique Forming a 42-Sided Voltage Space Vector Structure. IEEE Transactions on Industrial Electronics 2020, 6701–6709 [http://doi.org/10.1109/TIE.2020.3007079].
DOI: https://doi.org/10.1109/TIE.2020.3007079
Google Scholar
Dobrzański D., Kwaśny Ł.: Improvement of the resonant DC/DC converter efficiency through the use of soft switching. Wybrane zagadnienia z zakresu elektrotechniki, inżynierii biomedycznej i budownictwa: prace doktorantów Politechniki Lubelskiej. Lublin 2019 [https://pub.pollub.pl/publication/17965/].
Google Scholar
Dobrzański D.: Analysis of operation of LLC and CLLC DC/DC converters in bidirectional energy transfer applications. Interdyscyplinarność w badaniach naukowych: prace doktorantów Politechniki Lubelskiej. Lublin 2020 [https://pub.pollub.pl/publication/22035/].
Google Scholar
Ebadpour M.: A Multiport Isolated DC-DC Converter for Plug-in Electric Vehicles Based on Combination of Photovoltaic Systems and Power Grid. 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021 [http://doi.org/10.1109/PEDSTC52094.2021.9405870].
DOI: https://doi.org/10.1109/PEDSTC52094.2021.9405870
Google Scholar
Eldho R. P., Chhabra A., Ragasudha C. P.: An Overview on Single/Multi Output Isolated Resonant Converter Topologies for Vehicular applications. 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 2021 [http://doi.org/10.1109/ICACCS51430.2021.9441891].
DOI: https://doi.org/10.1109/ICACCS51430.2021.9441891
Google Scholar
El Menshawy M., Massoud A.: Multi-Module DC-DC Converter-based Fast Chargers for Neighbourhood Electric Vehicles. 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2021 [http://doi.org/10.1109/ISCAIE51753.2021.9431796].
DOI: https://doi.org/10.1109/ISCAIE51753.2021.9431796
Google Scholar
Fatyga K., Kwaśny Ł., Stefańczak B.: A comparison study of the features of DC/DC systems with Si IGBT and SiC MOSFET transistors. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 2/2018, 68–71 [http://doi.org/10.5604/01.3001.0012.0715].
DOI: https://doi.org/10.5604/01.3001.0012.0715
Google Scholar
Fatyga K., Zieliński D.: Comparison of main control strategies for DC/DC stage of bidirectional vehicle charger. International Symposium on Electrical Machines (SME), 2017 [http://doi.org/10.1109/ISEM.2017.7993585].
DOI: https://doi.org/10.1109/ISEM.2017.7993585
Google Scholar
Hai-Nam V., Abdel-Monem M., El Baghdadi M., Mierlo J. V., Lataire P., Hegazy O.: A Non-Regulated Full-Bridge Resonant Converter for implementing CC and CV Charging strategies of Electric Vehicles. 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), 2019 [http://doi.org/10.23919/EPE.2019.8914740].
DOI: https://doi.org/10.23919/EPE.2019.8914740
Google Scholar
Jain R., Laddha A., Satyanarayana N.: DC-DC Converter and Its Multiport Interface. IEEE 16th India Council International Conference (INDICON), 2019 [http://doi.org/10.1109/INDICON47234.2019.9030313].
DOI: https://doi.org/10.1109/INDICON47234.2019.9030313
Google Scholar
Janiga K.: A review of voltage control strategies for low-voltage networks with high penetration of distributed generation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3/2020, 60–65 [http://doi.org/10.35784/iapgos.1928].
DOI: https://doi.org/10.35784/iapgos.1928
Google Scholar
Khan M. Y. A., Liu H., Rehman N. U.: Design of a Multiport Bidirectional DC-DC Converter for Low Power PV Applications. International Conference on Emerging Power Technologies (ICEPT), 2021 [http://doi.org/10.1109/ICEPT51706.2021.9435425].
DOI: https://doi.org/10.1109/ICEPT51706.2021.9435425
Google Scholar
Kumar Bhajana V. V. S., Jarzyna W., Fatyga K. Zieliński D., Kwaśny Ł.: Performance of a SiC MOSFET based isolated dual active bridge DC-DC converter for electro-mobility applications. Revue Roumaine Des Sciences Techniques. Serie Electrotechnique et Enegetique 4 2019, 383–390 [http://revue.elth.pub.ro/upload/26007412_VKumar_RRST_4_2019_pp_383-390.pdf].
Google Scholar
Kumari R. G., Pasula N., Ezhilarasi A.: Design and Validation of High Gain Z-Source Fed LCL-T Resonant Charger for Constant Current. 6th International Conference for Convergence in Technology (I2CT), 2021 [http://doi.org/10.1109/I2CT51068.2021.9418069].
DOI: https://doi.org/10.1109/I2CT51068.2021.9418069
Google Scholar
Li G., Xia J., Wang., Deng Y., He X., Wang Y.: Hybrid Modulation of Parallel-Series LLC Resonant Converter and Phase Shift Full-Bridge Converter for a Dual-Output DC–DC Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics 7(2), 2019, 833–842 [https://doi.org/10.1109/JESTPE.2019.2900700].
DOI: https://doi.org/10.1109/JESTPE.2019.2900700
Google Scholar
Li X., Zhang Y., Fang P., Liu J.: Comprehensive Comparison of Three Typical Bridge Structure Isolated Soft Switching DC-DC Topologies in the Application of Locomotive Traction. IEEE International Conference on Industrial Technology (ICIT), 2019 [http://doi.org/10.1109/ICIT.2019.8755248].
DOI: https://doi.org/10.1109/ICIT.2019.8755248
Google Scholar
Litwin M., Zieliński D., Gopakumar K.: Remote Micro-Grid Synchronization Without Measurements at the Point of Common Coupling. IEEE Access 8, 2020, 212753–212764 [http://doi.org/10.1109/ACCESS.2020.3040697].
DOI: https://doi.org/10.1109/ACCESS.2020.3040697
Google Scholar
Mazurek P. A.: Selected legal and technical aspects of emc of electric vehicle charging stations. Przegląd Elektrotechniczny 97(1), 2021, 156–161 [http://doi.org/10.15199/48.2021.01.31].
DOI: https://doi.org/10.15199/48.2021.01.31
Google Scholar
Moradewicz A., Gawiński H., Parchomiuk M.: An Overview of Electric Vehicles Fast Charging Infrastructure. Progress in Applied Electrical Engineering (PAEE), 2019 [http://doi.org/10.1109/PAEE.2019.8788983].
DOI: https://doi.org/10.1109/PAEE.2019.8788983
Google Scholar
Moradewicz A.: On/Off–board chargers for electric vehicles. Przegląd Elektrotechniczny 95(2), 2019 [http://doi.org/10.15199/48.2019.02.30].
DOI: https://doi.org/10.15199/48.2019.02.30
Google Scholar
Nagesha C., Naresh K. R., Lakshminarasamma N.: Multi input Bidirectional Resonant Converter for Hybrid Energy Systems. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020 [http://doi.org/10.1109/PEDES49360.2020.9379591].
DOI: https://doi.org/10.1109/PEDES49360.2020.9379591
Google Scholar
Ning S., Yang J., Zhu Q., Su M., Tan R., Liu Y.: Comparative Analysis of LCL, LCLC, CLLC Compensation Networks for Capacitive Power Transfer. IEEE 4th Southern Power Electronics Conference (SPEC), 2018 [http://doi.org/10.1109/SPEC.2018.8635862].
DOI: https://doi.org/10.1109/SPEC.2018.8635862
Google Scholar
Pineda C., Pereda J., Rojas F., Droguett G., Burgos-Mellado C., Watson A. J.: Optimal ZCS Modulation for Bidirectional High-Step-Ratio Modular Multilevel DC-DC Converter. IEEE Transactions on Power Electronics (early access), 2021 [http://doi.org/10.1109/TPEL.2021.3078235].
DOI: https://doi.org/10.1109/TPEL.2021.3078235
Google Scholar
Ravishankar A. N., Kumaravel S., Ashok S.: Bidirectional Dual Input Single Output DC-DC Converter for Electric Vehicle Charger Application. IEEE 8th Global Conference on Consumer Electronics (GCCE), 2020 [http://doi.org/10.1109/GCCE46687.2019.9015400].
DOI: https://doi.org/10.1109/GCCE46687.2019.9015400
Google Scholar
Reddy R. M., Jana A. K., Das M.: Novel Wide Voltage Range Multi-Resonant Bidirectional DC-DC Converter. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020 [http://doi.org/10.1109/PEDES49360.2020.9379888].
DOI: https://doi.org/10.1109/PEDES49360.2020.9379888
Google Scholar
Sebastian E., Montijano E., Oyarbide E., Bernal C., Galves-Anguas R.: Nonlinear Implementable Control of a Dual Active Bridge Series Resonant Converter. IEEE Transactions on Industrial Electronics, 2021 [http://doi.org/10.1109/TIE.2021.3082062].
DOI: https://doi.org/10.1109/TIE.2021.3082062
Google Scholar
Wang K., Liu W., Wu F.: Topology-Level Power Decoupling Three-Port Isolated Current-Fed Resonant DC-DC Converter. IEEE Transactions on Industrial Electronics (early access), 2021 [http://doi.org/10.1109/TIE.2021.3082066].
DOI: https://doi.org/10.1109/TIE.2021.3082066
Google Scholar
Wei Y., Luo Q., Du X., Altin N., Alonso J. M., Mantooth A.: Analysis and Design of the LLC Resonant Converter With Variable Inductor Control Based on Time-Domain Analysis. IEEE Transactions on Industrial Electronics 67(7), 2020, 5432–5443 [http://doi.org/10.1109/TIE.2019.2934085].
DOI: https://doi.org/10.1109/TIE.2019.2934085
Google Scholar
Wei Y., Luo Q., Mantooth A.: A Hybrid Half-bridge LLC Resonant Converter and Phase Shifted Full-bridge Converter for High Step-up Application. IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2020 [http://doi.org/10.1109/WiPDAAsia49671.2020.9360292].
DOI: https://doi.org/10.1109/WiPDAAsia49671.2020.9360292
Google Scholar
Wei Y., Luo Q., Mantooth A.: Comprehensive Analysis and Design of LLC Resonant Converter with Magnetic Control. CPSS Transactions on Power Electronics and Applications 4(4), 2019, 265–275 [http://doi.org/10.24295/CPSSTPEA.2019.00025].
DOI: https://doi.org/10.24295/CPSSTPEA.2019.00025
Google Scholar
Wei Y., Luo Q., Mantooth A.: Overview of Modulation Strategies for LLC Resonant Converter. IEEE Transactions on Power Electronics 35(10), 2020, 10423–10443 [http://doi.org/10.1109/TPEL.2020.2975392].
DOI: https://doi.org/10.1109/TPEL.2020.2975392
Google Scholar
Wei Y., Luo Q., Wang Z., Mantooth A., Zhao X.: Comparison between different analysis methodologies for LLC resonant converter. IEEE Energy Conversion Congress and Exposition (ECCE), 2019 [http://doi.org/10.1109/ECCE.2019.8912840].
DOI: https://doi.org/10.1109/ECCE.2019.8912840
Google Scholar
Xiao Z., He Z., Ning Y., Wang H., Luo A., Chen Y., Chen J.: Optimization of LLC Resonant Converter With Two Degrees of Freedom Based on Operation Stage Trajectory Analysis. IEEE Access 9, 79629–79642 [http://doi.org/10.1109/ACCESS.2021.3083100].
DOI: https://doi.org/10.1109/ACCESS.2021.3083100
Google Scholar
Xue L., Shen Z., Boroyevich D., Mattavelli P., Diaz D.: Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Transactions on Power Electronics, 2015, 7299–7307 [http://doi.org/10.1109/TPEL.2015.2413815].
DOI: https://doi.org/10.1109/TPEL.2015.2413815
Google Scholar
Zieliński D., Fatyga K.: Attenuation of DC-Link Pulsation of a Four-Wire Inverter during Phase Unbalanced Current Operation. Applied Sciences, 2019 [http://doi.org/10.3390/app11031322].
DOI: https://doi.org/10.3390/app11031322
Google Scholar
Zieliński D., Tokovarov M.: Simulation and comparison of selected fast charger topologies. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 3, 2017, 23–28 [http://doi.org/10.5604/01.3001.0010.5209].
DOI: https://doi.org/10.5604/01.3001.0010.5209
Google Scholar
https://www.proton-motor.de/en/products/fuel-cell-systems/
Google Scholar
Autorzy
Damian Dobrzańskid.dobrzanski@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Department of Electrical Machines and Drives Polska
http://orcid.org/0000-0003-2689-6186
Statystyki
Abstract views: 355PDF downloads: 256
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Damian Dobrzański, PRZEGLĄD WYKORZYSTYWANYCH BEZPRZEWODOWYCH SYSTEMÓW ŁADOWANIA POJAZDÓW ELEKTRYCZNYCH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 8 Nr 3 (2018)