ZIARNISTA REPREZENTACJA POTENCJAŁU INFORMACYJNEGO ZMIENNYCH – PRZYKŁAD ZASTOSOWANIA
Adam Kiersztyn
Lublin University of Technology , Department of Computer Science (Polska)
http://orcid.org/0000-0001-5222-8101
Agnieszka Gandzel
Lublin University of Technology, Faculty od Technology Fundamentals (Polska)
http://orcid.org/0000-0002-7887-8636
Maciej Celiński
m.celinski@pollub.plLublin University of Technology, Faculty od Technology Fundamentals (Polska)
http://orcid.org/0000-0001-8412-207X
Leopold Koczan
Lublin University of Technology, Faculty od Technology Fundamentals (Polska)
http://orcid.org/0000-0002-7775-1836
Abstrakt
Wraz z wprowadzeniem do nauki paradygmatu obliczeń ziarnistych, w szczególności ziaren informacji, sposób myślenia o danych stopniowo się zmieniał. Zarówno specjaliści, jak i naukowcy przestali skupiać się na samych rekordach pojedynczych danych, ale zaczęli patrzeć na analizowane dane w szerszym kontekście, bliższym ludzkiemu myśleniu. Ten rodzaj reprezentacji wiedzy wyraża się w szczególności w podejściach opartych na modelowaniu językowym lub technikach rozmytych, takich jak klasteryzacja rozmyta. Dlatego szczególnie ważna z punktu widzenia metodologii badania danych jest próba zrozumienia ich potencjału jako ziaren informacji. W niniejszym opracowaniu przedstawimy szczególne przypadki wykorzystania innowacyjnej metody reprezentacji potencjału informacyjnego zmiennych za pomocą ziaren informacji. W serii eksperymentów numerycznych opartych zarówno na danych generowanych sztucznie, jak i danych ekologicznych dotyczących zmian dat przylotów ptaków w kontekście zmian klimatycznych, demonstrujemy skuteczność proponowanego podejścia przy użyciu klasycznych, a nie rozmytych miar budujących ziarna informacji.
Słowa kluczowe:
obliczenia ziarniste, ziarna informacji, reprezentacja wiedzy, grupowanie rozmyte, dane ekologiczneBibliografia
Altonji J. G., Elder T. E., Taber C. R.: Selection on observed and unobserved variables: Assessing the effectiveness of catholic schools. Journal of Political Economy 113(1), 2005, 151–184 [http://doi.org/10.1086/426036].
DOI: https://doi.org/10.1086/426036
Google Scholar
Barbieri M. M., Berger J. O.: Optimal predictive model selection. Ann. Statist. 32(3), 2004, 870–897 [http://doi.org/10.1214/009053604000000238].
DOI: https://doi.org/10.1214/009053604000000238
Google Scholar
Bargiela A., Pedrycz W.: Human-centric information processing through granular modelling. Springer Science & Business Media 182, 2009 [http://doi.org/10.1007/978-3-540-92916-1].
DOI: https://doi.org/10.1007/978-3-540-92916-1
Google Scholar
Bargiela A., Pedrycz W.: Granular computing. In: Handbook on Computational Intelligence. World Scientific, 2016 [http://doi.org/10.1142/9789814675017_0002].
DOI: https://doi.org/10.1142/9789814675017_0002
Google Scholar
Bursac Z., Gauss, C. H., Williams D. K., Hosmer D. W.: Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine 3(1), 2008, 17 [http://doi.org/10.1186/1751-0473-3-17].
DOI: https://doi.org/10.1186/1751-0473-3-17
Google Scholar
Gauch H.: Model selection and validation for yield trials with interaction. Biometrics 44(3), 1988, 705–715 [http://doi.org/10.2307/2531585].
DOI: https://doi.org/10.2307/2531585
Google Scholar
Geisser S., Eddy W. F.: A predictive approach to model selection. Journal of the American Statistical Association 74(365), 1979, 153–160 [http://doi.org/10.1080/01621459.1979.10481632].
DOI: https://doi.org/10.1080/01621459.1979.10481632
Google Scholar
Genuer R., Poggi J. M., Tuleau-Malot C.: Variable selection using random forests. Pattern Recognition Letters 31(14), 2010, 2225–2236 [http://doi.org/10.1016/j.patrec.2010.03.014].
DOI: https://doi.org/10.1016/j.patrec.2010.03.014
Google Scholar
Johnson J. B., Omland K. S.: Model selection in ecology and evolution. Trends in Ecology & Evolution 19(2), 2004, 101–108 [http://doi.org/10.1016/j.tree.2003.10.013].
DOI: https://doi.org/10.1016/j.tree.2003.10.013
Google Scholar
Kiersztyn A., Karczmarek P., Lopucki R., Pedrycz W., Al E., Kitowski I., Zbyryt A.: Data imputation in related time series using fuzzy set-based techniques. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow 2020, 1–8.
DOI: https://doi.org/10.1109/FUZZ48607.2020.9177617
Google Scholar
Kiersztyn A., Karczmarek P., Kiersztyn K., Pedrycz W.: Detection and Classification of Anomalies in Large Data Sets on the Basis of Information Granules. IEEE Transactions on Fuzzy Systems, 2021 [htp://doi.org/10.1109/TFUZZ.2021.3076265].
DOI: https://doi.org/10.1109/FUZZ45933.2021.9494466
Google Scholar
Kiersztyn A., Karczmarek P., Kiersztyn K., Pedrycz W.: The Concept of Detecting and Classifying Anomalies in Large Data Sets on a Basis of Information Granules. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, 1–7.
DOI: https://doi.org/10.1109/TFUZZ.2021.3076265
Google Scholar
Kiersztyn A., Karczmarek P., Kiersztyn K., Łopucki R., Grzegórski S., Pedrycz W.: The Concept of Granular Representation of the Information Potential of Variables. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, 1–6.
DOI: https://doi.org/10.1109/FUZZ45933.2021.9494582
Google Scholar
Laud P.W., Ibrahim J.G.: Predictive model selection. Journal of the Royal Statistical Society: Series B (Methodological) 57(1), 1995, 247–262 [http://doi.org/10.1111/j.2517-6161.1995.tb02028].
DOI: https://doi.org/10.1111/j.2517-6161.1995.tb02028.x
Google Scholar
Mac Nally R.: Regression and model-building in conservation biology, biogeography and ecology: the distinction between – and reconciliation of – "predictive" and "explanatory" models. Biodiversity & Conservation 9(5), 2000, 655–671 [http://doi.org/10.1023/A:1008985925162].
DOI: https://doi.org/10.1023/A:1008985925162
Google Scholar
Olivera A. R., Roesler V., Iochpe C., Schmidt M. I., Vigo A., Barreto S. M., Duncan B. B.: Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes-elsa-brasil: Accuracy study. Sao Paulo Medical Journal 135(3), 2017, 234–246 [http://doi.org/10.1590/1516-3180.2016.0309010217].
DOI: https://doi.org/10.1590/1516-3180.2016.0309010217
Google Scholar
Pearce-Higgins J. W., Green R. E.: Birds and climate change: Impacts and conservation responses. Cambridge University Press 2014.
DOI: https://doi.org/10.1017/CBO9781139047791
Google Scholar
Pedrycz W.: Knowledge-based clustering: From data to information granules. John Wiley & Sons, 2005 [http://doi.org/10.5555/1044924].
DOI: https://doi.org/10.1002/0471708607
Google Scholar
Piironen J., Vehtari A.: Projection predictive model selection for Gaussian processes. IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Salerno 2016, 1–6.
DOI: https://doi.org/10.1109/MLSP.2016.7738829
Google Scholar
Piironen J., Vehtari A.: Comparison of Bayesian predictive methods for model selection. Statistics and Computing 27(3), 2017, 711–735. [http://doi.org/10.1007/s11222-016-9649-y].
DOI: https://doi.org/10.1007/s11222-016-9649-y
Google Scholar
ptop.org.pl (2016), (available: 01.10.2020).
Google Scholar
Schafer B. C., Wakabayashi K.: Machine learning predictive modelling high-level synthesis design space exploration. IET Computers & Digital Techniques 6(3), 2012, 153–159 [http://doi.org/10.1049/iet-cdt.2011.0115].
DOI: https://doi.org/10.1049/iet-cdt.2011.0115
Google Scholar
Smith A., Naik P. A., Tsai C. L.: Markov-switching model selection using Kullback-Leibler divergence. Journal of Econometrics 134(2), 2006, 553–577 [http://doi.org/10.1016/j.jeconom.2005.07.005].
DOI: https://doi.org/10.1016/j.jeconom.2005.07.005
Google Scholar
Stephens P. A., Mason L. R., Green R. E., Gregory R. D., Sauer J. R., Alison J., Aunins A., Brotons L., Butchart S. H., Campedelli T., et al.: Consistent response of bird populations to climate change on two continents. Science 352(6281), 2016, 84–87 [http://doi.org/10.1126/science.aac4858].
DOI: https://doi.org/10.1126/science.aac4858
Google Scholar
Symonds M. R., Moussalli A.: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology 65(1), 2011, 13–21 [http://doi.org/10.1007/s00265-010-1037-6].
DOI: https://doi.org/10.1007/s00265-010-1037-6
Google Scholar
Autorzy
Adam KiersztynLublin University of Technology , Department of Computer Science Polska
http://orcid.org/0000-0001-5222-8101
Autorzy
Agnieszka GandzelLublin University of Technology, Faculty od Technology Fundamentals Polska
http://orcid.org/0000-0002-7887-8636
Autorzy
Maciej Celińskim.celinski@pollub.pl
Lublin University of Technology, Faculty od Technology Fundamentals Polska
http://orcid.org/0000-0001-8412-207X
Autorzy
Leopold KoczanLublin University of Technology, Faculty od Technology Fundamentals Polska
http://orcid.org/0000-0002-7775-1836
Statystyki
Abstract views: 367PDF downloads: 169
Licencja

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Bartosz Wijatkowski, Jakub Smołka, Maciej Celiński, BADANIE WPŁYWU STEROWANIA GRĄ PLATFORMOWĄ NA EFEKTYWNOŚĆ ROZGRYWKI , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 11 Nr 3 (2021)
- Maciej Celiński, Adam Kiersztyn, PRZEGLĄD OSIĄGNIĘĆ PRACOWNIKÓW POLITECHNIKI LUBELSKIEJ W DZIEDZINIE WYKORZYSTANIA ZBIORÓW ROZMYTYCH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 14 Nr 2 (2024)