PRZEGLĄD TECHNIK DIAGNOSTYKI SKÓRY W OPARCIU O MODELE WIELOWARSTWOWE SKÓRY I SPEKTROFOTOMETRIĘ

Magdalena Michalska

mmagamichalska@gmail.com
Lublin University of Technology, Department of Electronics and Information Technology (Polska)
http://orcid.org/0000-0002-0874-3285

Abstrakt

Obecnie spektrofotometria jest obiecującym narzędziem do nieinwazyjnego badania właściwości optycznych ludzkiej skóry. Otrzymane podczas badania widma poddawane są wnikliwej analizie dzięki opracowanym przez wielu naukowców modeli. Opracowane modele wielowarstwowe mają na celu oddać najwierniej procesy zachodzące w skórze, jej warstwy i istotne elementy. Diagnozowanych jest wiele chorób skóry: bielactwo, naczyniaki, znamiona skórne, czerniak. Artykuł przedstawia przegląd ciekawych rozwiązań z użyciem spektrofotometrii w procesie diagnostyki chorób skóry.


Słowa kluczowe:

modele wielowarstwowe skóry, diagnostyka chorób skóry, spektrofotometria, widma

Barral J. K., Bangerter N. K., Hu B. S., Nishimura D. G.: In vivo vigh-resolution magnetic resonance skin imaging at 1.5 T and 3 T. MagnReson Med. 63(3), 2010, 790–796.
DOI: https://doi.org/10.1002/mrm.22271   Google Scholar

Barun V. V., Ivanov A. P.: Optical parameters of disperse medium with large absorbing and scattering inclusions. Opt. Spektrosk. 96 (6), 2004, 1019.
  Google Scholar

Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics 38(15), 2005, 2543.
DOI: https://doi.org/10.1088/0022-3727/38/15/004   Google Scholar

Bjorgan A., Milanic M., Randeberg L. L.: Estimation of skin optical parameters for real-time hyperspectral imaging applications. Journal of Biomedical Optics 19(6), 2014, 066003.
DOI: https://doi.org/10.1117/1.JBO.19.6.066003   Google Scholar

Cheong W. F., Prahl S. A., Welsh A. J.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 1990, 2166–2185.
DOI: https://doi.org/10.1109/3.64354   Google Scholar

Claridge E., Cotton S., Hall P., Moncrieff M.: From colour to tissue histology: physics based interpretation of images of pigmented skin lesions. MICCAI (1), 2002, 730–738.
DOI: https://doi.org/10.1007/3-540-45786-0_90   Google Scholar

Claridge E., Cotton S., Moncrieff M., Hall P.: Spectrophotometric Intracutaneous Imaging (SIAscopy): Method and clinical applications. Handbook of non-invasive methods and the skin (2nd ed). CRC Press 2006.
DOI: https://doi.org/10.3109/9781420003307-44   Google Scholar

Cugmas B., Bregar M., Bürmen M., Pernuš F., Likar B.: Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: problems and solutions. Journal of biomedical optics 19(3), 2014, 037002–037002.
DOI: https://doi.org/10.1117/1.JBO.19.3.037002   Google Scholar

Dwyer T., Blizzard L., Ashbolt R., Plumb J., Berwick M., Stankovich J. M.: Cutaneous melanin density measured by spectrophotometry and risk of malignant melanoma, basal cell carcinoma and inner arm melanin density and squamous cell carcinoma of the skin. Am. J. Epidemiol. 155, 2002, 614–621.
DOI: https://doi.org/10.1093/aje/155.7.614   Google Scholar

Dwyer T., Prota G., Blizzard L., Ashbolt R., Vincensi M. R.: Melanin density and melanin type predict melanocytic naevi in 19–20-year-olds of northern European ancestry. Melanoma Res. 10, 2000, 387–394.
DOI: https://doi.org/10.1097/00008390-200008000-00011   Google Scholar

Emery J. D., Hunter J., Hall P. N., Watson A. J., Moncrieff M., Walter F. M.: Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatology 10, 2010, 1–9.
DOI: https://doi.org/10.1186/1471-5945-10-9   Google Scholar

Everett M. A., Yeargers E., Sayre R. M., Olson R. L.: Penetration of epidermis by ultraviolet rays. Photochem. Photobiol. 5, 1966, 533–542.
DOI: https://doi.org/10.1111/j.1751-1097.1966.tb09843.x   Google Scholar

Fergusonpell M., Hagisawa S.: An empirical technique to compensate for melanin when monitoring skin microcirculation using reflectance spectrophotometr. Medical Engineering & Physics 17(2), 1995, 104–110.
DOI: https://doi.org/10.1016/1350-4533(95)91880-P   Google Scholar

Govindan K., Smith J., Knowles L., Harvey A., Townsend P., Kenealy J.: Assessment of nurse-led screening of pigmented lesions using SIAscope. J. Plast. Reconstr. Aesthet. Surg. 60(6), 2007, 639–645.
DOI: https://doi.org/10.1016/j.bjps.2006.10.003   Google Scholar

Harrison D. K.: The clinical application of optical spectroscopy in monitoring tissue oxygen supply following cancer treatment. In: Soh K. S., Kang K., Harrison D. (eds): The Primo Vascular System. Springer, New York, NY. [https://doi.org/10.1007/978-1-4614-0601-3_39].
DOI: https://doi.org/10.1007/978-1-4614-0601-3_39   Google Scholar

Jacques S. L., McAuliffe D. J.: The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem Photobiol 53, 1991, 769–775.
DOI: https://doi.org/10.1111/j.1751-1097.1991.tb09891.x   Google Scholar

Khan T. K., Wender P. A., Alkon D. L.: Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents. Journal of Cellular Physiology 233(2), 2018, 1523–1534.
DOI: https://doi.org/10.1002/jcp.26043   Google Scholar

Lee J., Bangerter N., Cunningham C., DiCarlo J., Hu B., Nishimura D.: 3D high resolution skin imaging. Proceedings of the 12th Annual Meeting of ISMRM; Kyoto, Japan, 2004, 094.
  Google Scholar

Lee M., Jung Y., Kim E., Kwang Lee H.: Comparison of skin properties in individuals living in cities at two different altitudes: an investigation of the environmental effect on skin. J. Cosmet. Dermatol. 16(1), 2017, 26–34.
DOI: https://doi.org/10.1111/jocd.12270   Google Scholar

Lisenko S., Kugeiko M.: A method for operative quantitative interpretation of multispectral images of biological tissues. Optics and Spectroscopy 115(4), 2013, 610–618.
DOI: https://doi.org/10.1134/S0030400X1310010X   Google Scholar

Lysenko S., Kugeiko M.: Method of noninvasive determination of optical and microphysical parameters of human skin. Measurement Techniques 56(1), 2013, 104–112.
DOI: https://doi.org/10.1007/s11018-013-0166-5   Google Scholar

Maeda T., Arakawa N., Akahashi M., Aizu Y.: Monte Carlo Simulation of spectral reflectance using a multilayered skin tissue model. Optical Review 17(3), 2010, 223–229.
DOI: https://doi.org/10.1007/s10043-010-0040-5   Google Scholar

Meyer L. E, Otberg N., Sterry W., Lademann J.: In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin. J. of Biomedical Optics 11(4), 2006, 044012.
DOI: https://doi.org/10.1117/1.2337294   Google Scholar

Prahl S.: Optical absorption of hemoglobin. Oregon Medical Laser Center, USA, 1998.
  Google Scholar

Prince S., Malarvizhi S.: Analysis of spectroscopic diffuse reflectance plots for different skin conditions. Journal of spectroscopy 24(5), 2010, 467–481.
  Google Scholar

Prince S., Malarvizhi S.: Spectroscopic diffuse reflectance plots for different skin conditions. Spectroscopy 24, 2010, 467–481.
DOI: https://doi.org/10.1155/2010/791473   Google Scholar

Rajadhyaksha M., Grossman M., Esterowitz D., Webb R. H., Anderson R. R.: In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. Journal of Investigative Dermatology 104(6), 1995, 946–952.
DOI: https://doi.org/10.1111/1523-1747.ep12606215   Google Scholar

Reuss J. L.: Multilayer modeling of reflectance pulse oximetry. IEEE Transactions on Biomedical Engineering 52(2), 2005.
DOI: https://doi.org/10.1109/TBME.2004.840188   Google Scholar

Suihko C., Swindle L. D., Thomas S. G., Serup J.: Fluorescence fibre-optic confocal microscopy of skin in vivo: microscope and fluorophores, Skin Res. Technol. 11, 2005, 254–267.
DOI: https://doi.org/10.1111/j.0909-725X.2005.00152.x   Google Scholar

Tuchin V. V., Yaroslavsky I. V.: Tissue optics, light distribution, and spectroscopy. Optical Engineering 33(10), 1994, 3180.
DOI: https://doi.org/10.1117/12.178900   Google Scholar

Tuchin V. V.: Light scattering study of tissues. Physics-Uspekhi 40, 1997, 495–515.
DOI: https://doi.org/10.1070/PU1997v040n05ABEH000236   Google Scholar

Tuchin V. V.: Tissue optics and photonics: Biological tissue structures. J. of Biomedical Photonics & Eng., 1(1), 2015.
DOI: https://doi.org/10.18287/JBPE-2015-1-1-3   Google Scholar

Valisuo P.: Photonics simulation and modelling of skin for design of spectrocutometer. Acta Wasaensia 242, Automation Technology 2, Universitas Wasaensis 2011
  Google Scholar

Välisuo P., Mantere T., Alander J.: Solving optical skin simulation model parameters using genetic algorithm. 2nd International Conference on BioMedical Engineering and Informatics, 2009, 376–380.
DOI: https://doi.org/10.1109/BMEI.2009.5305146   Google Scholar

van der Mei A.F., Blizzard L., Stankovich J., Ponsonby A. L.: Misclassification due to body hair and seasonal variation on melanin density estimates for skin type using spectrophotometry. Journal of Photochemistry and Photobiology B: Biology 68, 2002, 45–52.
DOI: https://doi.org/10.1016/S1011-1344(02)00331-7   Google Scholar

van Gemert M. J. C., Jacques S. L., Sterenborg H. J. C. M., Star W. M.: Skin optics. IEEE Trans. Biomed. Eng. 36, 1989, 1146–1154.
DOI: https://doi.org/10.1109/10.42108   Google Scholar

Vestergaard M. E., Macaskill P., Holt P. E., Menzies S. W.: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. British Journal of Dermatology 159(3), 2008, 669–676.
DOI: https://doi.org/10.1111/j.1365-2133.2008.08713.x   Google Scholar

Wego A.: Accuracy simulation of an led based spectrophotometer. Optik, 124(7), 2013, 644–649.
DOI: https://doi.org/10.1016/j.ijleo.2012.01.005   Google Scholar

Wilson E. C. F., Emery J. D., Kinmonth A. L., Prevost A. T., Morris H. C., Humphrys E., Hall P. N., Burrows N., Bradshaw L., Walls J., Norris P., Johnson M., Walter F. M.: The cost-effectiveness of a novel SIAscopic diagnostic aid for the management of pigmented skin lesions in primary care. A Decision-Analytic Model, Value in Health 16(2), 2013, 356–366.
DOI: https://doi.org/10.1016/j.jval.2012.12.008   Google Scholar

Young A. R.: Chromophores in human skin. Physics in Medicine and Biology 42(5), 1997, 789–802.
DOI: https://doi.org/10.1088/0031-9155/42/5/004   Google Scholar


Opublikowane
2021-09-30

Cited By / Share

Michalska, M. (2021). PRZEGLĄD TECHNIK DIAGNOSTYKI SKÓRY W OPARCIU O MODELE WIELOWARSTWOWE SKÓRY I SPEKTROFOTOMETRIĘ. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(3), 30–33. https://doi.org/10.35784/iapgos.2714

Autorzy

Magdalena Michalska 
mmagamichalska@gmail.com
Lublin University of Technology, Department of Electronics and Information Technology Polska
http://orcid.org/0000-0002-0874-3285

Statystyki

Abstract views: 400
PDF downloads: 195