SYMULACJE NUMERYCZNE PŁASKIEGO FANTOMU W BLISKIM POLU SYMETRYCZNEJ ANTENY DIPOLOWEJ
Monika Styła
monika.styla91@gmail.comUniwersytet Medyczny w Lublinie (Polska)
https://orcid.org/0000-0001-6310-3582
Sebastian Styła
Politechnika Lubelska (Polska)
https://orcid.org/0000-0002-3239-4433
Abstrakt
W pracy przedstawiono numeryczne symulacje elektromagnetyczne SAR dla tkanek ludzkich w oparciu o algorytm FDTD z wykorzystaniem platformy Sim4Life. Zamodelowano płaskodenny dielektryk (fantom płaski) oraz półfalową symetryczną antenę dipolową. Symulacje wykonano dla częstotliwości 0.9 GHz i 0.6 GHz. Analizy zostały wykonane zgodnie ze standardem IEEE/IEC62704-1 i obejmują rozkłady pól elektrycznych i magnetycznych wokół fantomu i anteny. Na koniec zaprezentowano rozkłady SAR w fantomie i pobliżu anteny.
Słowa kluczowe:
współczynnik absorbcji swoistej, symulacje numeryczne, Sim4LifeBibliografia
Alekseev S. I., Radzievsky A. A., Szabo I., Ziskin M. C.: Local heating of human skin by millimeter waves: Effect of blood flow. Bioelectromagnetics 26(6), 2005, 489–501 [http://doi.org/10.1002/bem.20118].
DOI: https://doi.org/10.1002/bem.20118
Google Scholar
Andrenko A., Shimizu Y., Wake K.: SAR Measurements of UHF RFID Reader Antenna Operating in Close Proximity to a Flat Phantom. IEEE International Conference on RFID Technology and Applications (RFID-TA), 2019 [http://doi.org/10.1109/RFID-TA.2019.8892054].
DOI: https://doi.org/10.1109/RFID-TA.2019.8892054
Google Scholar
Balzano Q., Garay O., Jr T. J.: Electromagnetic Energy Exposure of the Users of Portable Cellular Telephones. Vehicular Technology, IEEE Transactions, 44, 1995, 390–403 [http://doi.org/10.1109/25.406605].
DOI: https://doi.org/10.1109/25.406605
Google Scholar
Bonato M., Dossi L., Gallucci S., Benini M., Tognola G., Parazzini M.: Assessment of Human Exposure Levels Due to Mobile Phone Antennas in 5G Networks. International Journal of Environmental Research and Public Health 19(3), 2022, 1546 [http://doi.org/10.3390/ijerph19031546].
DOI: https://doi.org/10.3390/ijerph19031546
Google Scholar
Colombi D., Thors B., TöRnevik C., Balzano Q.: RF Energy Absorption by Biological Tissues in Close Proximity to Millimeter-Wave 5G Wireless Equipment. IEEE Access 6, 2018, 4974–4981, [http://doi.org/10.1109/ACCESS.2018.2790038].
DOI: https://doi.org/10.1109/ACCESS.2018.2790038
Google Scholar
Hirata A.: Human exposure to radiofrequency energy above 6 GHz: review of computational dosimetry studies. Physics in Medicine and Biology 66, 2021, 08TR01 [http://doi.org/10.1088/1361-6560/abf1b7].
DOI: https://doi.org/10.1088/1361-6560/abf1b7
Google Scholar
ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics 74(4), 1998, 494–522.
Google Scholar
Kuster N., Balzano Q.: Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. Vehicular Technology, IEEE Transactions 41, 1992, 17–23 [http://doi.org/10.1109/25.120141].
DOI: https://doi.org/10.1109/25.120141
Google Scholar
Kuster N., Kastle R,, Schmid T.: Dosimetric Evaluation of Handheld Mobile Communications Equipment with Known Precision. EICE Transactions on Communications E80-B(5), 1997, 645–652.
Google Scholar
Papakanellos P. J., Nanou E. D., Sakka N. I., Tsiafakis V. S. G.: Near field interaction between a brain tissue equivalent phantom and a dipole antenna. 2nd International Workshop on Biological Effects of Electromagnetic Fields, 2001, 888–897.
Google Scholar
Riu P. J., Foster K.: Heating of tissue by near-field exposure to a dipole: A model analysis. IEEE transactions on biomedical engineering 46, 1999, 911–917 [http://doi.org/10.1109/10.775400].
DOI: https://doi.org/10.1109/10.775400
Google Scholar
Schmid T., Egger O., Kuster N.: Automated E-field scanning system for dosimetric assessments. IEEE Transactions on Microwave Theory and Techniques 44(1), 1996, 105–113 [http://doi.org/10.1109/22.481392].
DOI: https://doi.org/10.1109/22.481392
Google Scholar
Stutzman W. L., Thiele G. A.: Antenna Theory and Design. Wiley, 2012.
Google Scholar
Thors B., Colombi D, Ying Z., Bolin T., Törnevik C.: Exposure to RF EMF From Array Antennas in 5G Mobile Communication Equipment. IEEE Access 4, 2016, 7469–7478 [http://doi.org/10.1109/ACCESS.2016.2601145].
DOI: https://doi.org/10.1109/ACCESS.2016.2601145
Google Scholar
Umashankar K., Taflove A.: A Novel Method to Analyze Electromagnetic Scattering of Complex Objects. IEEE Transactions on Electromagnetic Compatibility 4, 1982, 397–405 [http://doi.org/10.1109/TEMC.1982.304054].
DOI: https://doi.org/10.1109/TEMC.1982.304054
Google Scholar
Yee K,: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation 14, 1966, 302–307 [http://doi.org/10.1109/TAP.1966.1138693].
DOI: https://doi.org/10.1109/TAP.1966.1138693
Google Scholar
Yu Q., Gandhi O.P., Aronsson M., Wu D.: An automated SAR measurement system for compliance testing of personal wireless devices. IEEE Transactions on Electromagnetic Compatibility 41, 1999, 234 [http://doi.org/10.1109/15.784158].
DOI: https://doi.org/10.1109/15.784158
Google Scholar
Ziskin M., Alekseev S., Foster K., Balzano Q.: Tissue models for RF exposure evaluation at frequencies above 6 GHz. Bioelectromagnetics – Wiley Online Library 39, 2018, 17389 [http://doi.org/10.1002/bem.22110].
DOI: https://doi.org/10.1002/bem.22110
Google Scholar
fcc.gov/consumers/guides/specific-absorption-rate-sar-cell-phones-what-it-means-you (13.05.2022).
Google Scholar
Autorzy
Monika Styłamonika.styla91@gmail.com
Uniwersytet Medyczny w Lublinie Polska
https://orcid.org/0000-0001-6310-3582
Statystyki
Abstract views: 221PDF downloads: 130
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.