KOMPLEKSOWE METODY UCZENIA MASZYNOWEGO I UCZENIA GŁĘBOKIEGO DO KLASYFIKACJI CHOROBY PARKINSONA I OCENY JEJ NASILENIA
Oumaima Majdoubi
oumaima_majdoubi@um5.ac.maMohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Maroko)
https://orcid.org/0009-0000-2968-7975
Achraf Benba
Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Maroko)
https://orcid.org/0000-0001-7939-0790
Ahmed Hammouch
Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Maroko)
https://orcid.org/0009-0005-8691-6662
Abstrakt
W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny ciężkości choroby Parkinsona.
Słowa kluczowe:
choroba Parkinsona, ocena ciężkości, uczenie maszynowe, XGBoost, Gated Recurrent Unit (GRU), analiza porównawczaBibliografia
Abunadi I.: Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer's disease. Connect. Sci. 34, 2022, 2395–2430.
DOI: https://doi.org/10.1080/09540091.2022.2123450
Google Scholar
Balaji E. et al.: Automatic and non-invasive Parkinson's disease diagnosis and severity rating using LSTM network. Applied Soft Computing 108, 2021, 107463.
DOI: https://doi.org/10.1016/j.asoc.2021.107463
Google Scholar
Benba A., Jilbab A., Et Hammouch A.: Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson's disease and healthy people. International Journal of Speech Technology 19, 2016, 449-456.
DOI: https://doi.org/10.1007/s10772-016-9338-4
Google Scholar
Bourdenx M. et al.: Identification of distinct pathological signatures induced by patient-derived ?-synuclein structures in nonhuman primates. Science advances 6(20), 2020, eaaz9165.
Google Scholar
Chaudhuri K. R., Schapira A. H.: Non-motor symptoms of Parkinson's disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 2009, 464–474.
DOI: https://doi.org/10.1016/S1474-4422(09)70068-7
Google Scholar
El Bakali S., Ouadi H., Saad G.: Day-ahead seasonal solar radiation prediction, combining VMD and STACK algorithms. Clean Energy 7(4) (2023), 911–925.
DOI: https://doi.org/10.1093/ce/zkad025
Google Scholar
Erdogdu Sakar B., Serbes G., Sakar C. O.: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS ONE 12(8), 2017, e0182428.
DOI: https://doi.org/10.1371/journal.pone.0182428
Google Scholar
Gelly G.: Reseaux de neurones recurrents pour le traitement automatique de la parole. Ph.D. thesis, Université Paris Saclay (COmUE), Paris 2017.
Google Scholar
Gheouany S. et al.: Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties. Energy Conversion and Management 291, 2023, 117309.
DOI: https://doi.org/10.1016/j.enconman.2023.117309
Google Scholar
Grover S., Bhartia S., Yadav A., Seeja K.: Predicting severity of Parkinson's disease using deep learning. Procedia Comput. Sci. 132, 2018, 1788-1794.
DOI: https://doi.org/10.1016/j.procs.2018.05.154
Google Scholar
Guo R. et al.: Degradation state recognition of piston pump based on ICEEMDAN and XGBoost. Applied Sciences 10(18), 2020, 6593.
DOI: https://doi.org/10.3390/app10186593
Google Scholar
Gupta I. et al.: PCA-RF: an efficient Parkinson's disease prediction model based on random forest classification. 2022, arXiv preprint arXiv:2203.11287.
Google Scholar
Gürüler H.: A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Computing & Applications 28(7), 2017, 1657-1666.
DOI: https://doi.org/10.1007/s00521-015-2142-2
Google Scholar
Kumar A. et al.: A new Diagnosis using a Parkinson's Disease XGBoost and CNN-based classification model Using ML Techniques. International Conference on Advanced Computing Technologies and Applications – ICACTA. Coimbatore 2022, 1–6.
Google Scholar
Little M., McSharry P., Hunter E., Spielman J., Ramig L.: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. Nat. Preced. 2008.
DOI: https://doi.org/10.1038/npre.2008.2298.1
Google Scholar
Majdoubi O., Benba A., Hammouch A.: Classification of Parkinson's disease and other neurological disorders using voice features extraction and reduction techniques. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 13(3), 2023, 16-22.
DOI: https://doi.org/10.35784/iapgos.3685
Google Scholar
Poewe W., Seppi K., Tanner C., Halliday G., Brundin P., Volkmann J., Schrag A., Lang A.: Parkinson disease. Nat. Rev. Dis. Prim. 3, 2017, 17013.
DOI: https://doi.org/10.1038/nrdp.2017.13
Google Scholar
Prakash P., Sebban M., Habrard A., Barthelemy J.-C., Roche F., Pichot V.: Détection automatique des apnées du sommeil sur l'ECG nocturne par un apprentissage profond en réseau de neurones récurrents (RNN). Médecine du Sommeil 18(1), 2021, 43-44.
DOI: https://doi.org/10.1016/j.msom.2020.11.077
Google Scholar
Quan C., Ren K., Luo Z., Chen Z., Ling Y.: End-to-end deep learning approach for Parkinson's disease detection from speech signals. Biocybern. Biomed. Eng. 42, 2022, 556-574.
DOI: https://doi.org/10.1016/j.bbe.2022.04.002
Google Scholar
Rehman A. et al.: Parkinson's disease detection using hybrid lstm-gru deep learning model. Electronics 12(13), 2023, 2856.
DOI: https://doi.org/10.3390/electronics12132856
Google Scholar
Sharanyaa S., Renjith P. N., Ramesh K.: An exploration on feature extraction and classification techniques for dysphonic speech disorder in Parkinson's Disease. Inventive Communication and Computational Technologies – ICICCT. Singapore, 2022.
DOI: https://doi.org/10.1007/978-981-16-5529-6_4
Google Scholar
Sriram T. V. S., Rao M. V., Narayana G. V. S., Kaladhar D. S. V. G. K.: Diagnosis of Parkinson disease using machine learning and data mining systems from voice dataset. 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications – FICTA. Berlin, 2014, 151–157.
DOI: https://doi.org/10.1007/978-3-319-11933-5_17
Google Scholar
Tallapureddy G., Radha D.: Analysis of Ensemble of Machine Learning Algorithms for Detection of Parkinson's Disease. International Conference on Applied Artificial Intelligence and Computing – ICAAIC. Salem, 2022, 354–361.
DOI: https://doi.org/10.1109/ICAAIC53929.2022.9793048
Google Scholar
Yasar A., Saritas I., Sahman M., Cinar A.: Classification of Parkinson disease data with artificial neural networks. IOP Conf. Ser. Mater. Sci. Eng. 675, 2019, 012031.
DOI: https://doi.org/10.1088/1757-899X/675/1/012031
Google Scholar
Autorzy
Oumaima Majdoubioumaima_majdoubi@um5.ac.ma
Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Maroko
https://orcid.org/0009-0000-2968-7975
Autorzy
Achraf BenbaMohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Maroko
https://orcid.org/0000-0001-7939-0790
Autorzy
Ahmed HammouchMohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Maroko
https://orcid.org/0009-0005-8691-6662
Statystyki
Abstract views: 197PDF downloads: 147
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Achraf Benba, Abdelilah Kerchaoui, AUTOMATYCZNE WYKRYWANIE CHOROBY ALZHEIMERA W OPARCIU O SZTUCZNĄ INTELIGENCJĘ , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 13 Nr 1 (2023)
- Achraf Benba, Fatima Zahra El Attaoui, Sara Sandabad, WDROŻENIE SYSTEMU POZYSKIWANIA EKG OPARTEGO NA SZTUCZNEJ INTELIGENCJI W CELU WYKRYWANIA NIEPRAWIDŁOWOŚCI SERCA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 13 Nr 1 (2023)
- Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch, KLASYFIKACJA CHOROBY PARKINSONA I INNYCH ZABURZEŃ NEUROLOGICZNYCH Z WYKORZYSTANIEM EKSTRAKCJI CECH GŁOSOWYCH I TECHNIK REDUKCJI , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 13 Nr 3 (2023)
- Achraf Benba, Mouna Akki, Sara Sandabad, ZASTOSOWANIE UCZENIA MASZYNOWEGO NA CZUJNIKACH SMARTFONÓW DO WYKRYWANIA UPADKÓW W CZASIE RZECZYWISTYM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 13 Nr 2 (2023)