IMPLEMENTACJA KOMPUTEROWEGO PRZETWARZANIA DANYCH BADANIA PROCESÓW RELAKSACYJNYCH Z WYKORZYSTANIEM ROZSZERZONEJ FUNKCJI WYKŁADNICZEJ
Andrey Lozovskyi
andrew.lozovsky@gmail.comOles Honchar Dnipro National University, Department of Electronic Computing Machinery (Ukraina)
http://orcid.org/0009-0003-6674-0757
Alexander Lyashkov
Oles Honchar Dnipro National University, Department of Applied Radiophysics, Electronics and Nanomaterials (Ukraina)
http://orcid.org/0000-0001-5779-6001
Igor Gomilko
Oles Honchar Dnipro National University, Department of Applied Radiophysics, Electronics and Nanomaterials (Ukraina)
http://orcid.org/0000-0003-3256-9771
Alexander Tonkoshkur
Oles Honchar Dnipro National University, Department of Electronic Computing Machinery (Ukraina)
http://orcid.org/0000-0002-1648-675X
Abstrakt
Przedmiotem badań jest opracowanie specjalistycznego systemu informacji pomiarowej do badania i kontroli procesów relaksacyjnych w materiałach i systemach technicznych. Celem pracy jest wykorzystanie technologii komputerowych do wyeliminowania rutynowych operacji związanych z przetwarzaniem danych eksperymentalnych, zwiększenia szybkości, dokładności i zawartości informacyjnej procesu badania kontroli czujników gazu. Zaproponowano wariant wykorzystania komputerowego przetwarzania danych do automatyzacji przetwarzania i podstawowej analizy danych eksperymentalnych badań naukowych i kontroli parametrów fizykochemicznych materiałów wrażliwych na gaz. Opracowany komputerowy system przetwarzania danych zapewnia praktyczną możliwość wykorzystania pomiarów charakterystyk kinetycznych wrażliwości czujników gazu do ich badań eksperymentalnych i kontroli, a tym samym do osiągnięcia wyższej dokładności i zawartości informacyjnej. Testy opracowanego systemu pomiaru informacji potwierdziły jego funkcjonalność i zgodność z wymaganiami dotyczącymi poprawy dokładności i szybkości procesu przetwarzania.
Słowa kluczowe:
system informacyjno-pomiarowy, czujnik gazu, rozszerzona funkcja wykładnicza, sprzęt, oprogramowanie, przetwarzanie danychBibliografia
Fraden J.: Handbook of Modern Sensors. Springer Verlag, 2004.
Google Scholar
Himanen L., Geurts A., Foster A. S., Rinke P.: Data‐driven materials science: status, challenges, and perspectives. Advanced Science 6(21), 2019, 1900808 [http://doi.org/10.1002/advs.201900808].
DOI: https://doi.org/10.1002/advs.201900808
Google Scholar
Klimentiev A. A.: Methods for processing very large amounts of data in a distributed heterogeneous computer environment for applications in high energy physics and nuclear physics. Physics of elementary particles and the atomic nucleus 51(6), 2020, 1175–1303.
DOI: https://doi.org/10.1134/S1063779620060052
Google Scholar
Labunets V. G., Kokh E. V., Ostheimer E.: Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images. Computer Optics 42(1), 2018, 84–95 [http://doi.org/10.18287/2412-6179-2018-42-1-84-95].
DOI: https://doi.org/10.18287/2412-6179-2018-42-1-84-95
Google Scholar
Makarov E. G.: Engineering calculations in Mathcad 15. Peter, Saint Petersburg 2011.
Google Scholar
Milovanov A. V., Rasmussen J. J., Rypdal K.: Stretched-exponential decay functions from a self-consistent model of dielectric relaxation. Phys. Lett. A. 372(13), 2008, 2148–2154 [http://doi.org/10.1016/j.physleta.2007.11.025].
DOI: https://doi.org/10.1016/j.physleta.2007.11.025
Google Scholar
Niss K., Dyre J.C., Hecksher T.: Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential? The Journal of Chemical Physics 152(4), 2020, 041103 [http://doi.org/10.1063/1.5142189].
DOI: https://doi.org/10.1063/1.5142189
Google Scholar
Pochinok A. V., Lazurik V. T., Tseluiko F. F., Borgun E. V.: Computer processing of the measurement results of the characteristics of the plasma ultraviolet source. Bulletin of the Kharkiv National University Physical series "Nuclei, particles, fields" 859, 2008, 59–64.
Google Scholar
Selivanova Z. M., Stasenko K. S.: Theoretical foundations for constructing intelligent information-measuring systems for tolerance control of thermal conductivity of heat-insulating materials: monograph. Publishing House of FGBOU VPO "TSTU", Tambov 2015.
Google Scholar
Simdyankin S. I., Mousseau N.: Relationship between dynamical heterogeneities and stretched exponential relaxation. Physical Review E. 68(4), 2003, 104–110 [http://doi.org/10.1103/PhysRevE.68.041110].
DOI: https://doi.org/10.1103/PhysRevE.68.041110
Google Scholar
Tonkoshkur A. S., Lozovskyi A. S.: Algorithm for processing gas sensor’s response kinetics data using extended exponential function without numerical differentiation. System technologies 1 (144), 2023, 24–34 [http://doi.org/10.34185/1562-9945-1-144-2023-04].
DOI: https://doi.org/10.34185/1562-9945-1-144-2023-04
Google Scholar
Tonkoshkur A. S., Lozovskyi A. S.: Application for calculating the parameters of a gas sensor from the experimental kinetic dependence of response. System technologies 2(133), 2021, 26–32 [http://doi.org/10.34185/1562-9945-2-133-2021-04].
DOI: https://doi.org/10.34185/1562-9945-2-133-2021-04
Google Scholar
Tonkoshkur A. S., Lyashkov A. Y., Povzlo E. L.: Kinetics of Response of ZnO-Ag Ceramics for Resistive Gas Sensor to the Impact of Methane, and its Analysis Using a Stretched Exponential Function. Sensors and Actuators B: Chemical 255, 2018, 1680–1686 [http://doi.org/10.1016/j.snb.2017.08.171].
DOI: https://doi.org/10.1016/j.snb.2017.08.171
Google Scholar
Tonkoshkur O. S., Povzlo E. L.: Algorithm for data processing of response kinetics of a resistive gas sensor based on the stretched exponential function model. System technologies 1(108), 2017, 129–134.
Google Scholar
Tonkoshkur Y. A., Glot A. B.: Isothermal depolarization current spectroscopy of localized states in metal oxide varistors. Journal of Physics D: Applied Physics 45, 2012, 465305 [http://doi.org/10.1088/0022-3727/45/46/465305].
DOI: https://doi.org/10.1088/0022-3727/45/46/465305
Google Scholar
Torgaev S. N., Musorov I. S., Chertikhina D. S., Trygub M. V.: Practical guide to programming STM-microcontrollers. Tomsk Polytechnic University, Tomsk 2015.
Google Scholar
Trzmiel J., Weron K., Janczura J., Placzek-Popko E.: Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cdl-xMnxTe mixed crystals. Journal of Physics Condensed Matter 21(34), 2009, 345801 [http://doi.org/10.1088/0953-8984/21/34/345801].
DOI: https://doi.org/10.1088/0953-8984/21/34/345801
Google Scholar
Wang W. H.: Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science 106, 2019, 10056 [http://doi.org/10.1016/j.pmatsci.2019.03.006].
DOI: https://doi.org/10.1016/j.pmatsci.2019.03.006
Google Scholar
Yuan Q. et al.: Aging Condition Assessment of XLPE Insulated Cables in Various Laying Environments Based on Isothermal Relaxation Current. IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), 2023, 1–4.
DOI: https://doi.org/10.1109/ICEMPE57831.2023.10139592
Google Scholar
Programming in Windows Forms [https://metanit.com/sharp/windowsforms] (available: 10.06.2023).
Google Scholar
Autorzy
Andrey Lozovskyiandrew.lozovsky@gmail.com
Oles Honchar Dnipro National University, Department of Electronic Computing Machinery Ukraina
http://orcid.org/0009-0003-6674-0757
Autorzy
Alexander LyashkovOles Honchar Dnipro National University, Department of Applied Radiophysics, Electronics and Nanomaterials Ukraina
http://orcid.org/0000-0001-5779-6001
Autorzy
Igor GomilkoOles Honchar Dnipro National University, Department of Applied Radiophysics, Electronics and Nanomaterials Ukraina
http://orcid.org/0000-0003-3256-9771
Autorzy
Alexander TonkoshkurOles Honchar Dnipro National University, Department of Electronic Computing Machinery Ukraina
http://orcid.org/0000-0002-1648-675X
Statystyki
Abstract views: 99PDF downloads: 89
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.