Fraden J.: Handbook of Modern Sensors. Springer Verlag, 2004.
Himanen L., Geurts A., Foster A. S., Rinke P.: Data‐driven materials science: status, challenges, and perspectives. Advanced Science 6(21), 2019, 1900808 [http://doi.org/10.1002/advs.201900808].
DOI: https://doi.org/10.1002/advs.201900808
Klimentiev A. A.: Methods for processing very large amounts of data in a distributed heterogeneous computer environment for applications in high energy physics and nuclear physics. Physics of elementary particles and the atomic nucleus 51(6), 2020, 1175–1303.
DOI: https://doi.org/10.1134/S1063779620060052
Labunets V. G., Kokh E. V., Ostheimer E.: Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images. Computer Optics 42(1), 2018, 84–95 [http://doi.org/10.18287/2412-6179-2018-42-1-84-95].
DOI: https://doi.org/10.18287/2412-6179-2018-42-1-84-95
Makarov E. G.: Engineering calculations in Mathcad 15. Peter, Saint Petersburg 2011.
Milovanov A. V., Rasmussen J. J., Rypdal K.: Stretched-exponential decay functions from a self-consistent model of dielectric relaxation. Phys. Lett. A. 372(13), 2008, 2148–2154 [http://doi.org/10.1016/j.physleta.2007.11.025].
DOI: https://doi.org/10.1016/j.physleta.2007.11.025
Niss K., Dyre J.C., Hecksher T.: Long-time structural relaxation of glass-forming liquids: Simple or stretched exponential? The Journal of Chemical Physics 152(4), 2020, 041103 [http://doi.org/10.1063/1.5142189].
DOI: https://doi.org/10.1063/1.5142189
Pochinok A. V., Lazurik V. T., Tseluiko F. F., Borgun E. V.: Computer processing of the measurement results of the characteristics of the plasma ultraviolet source. Bulletin of the Kharkiv National University Physical series "Nuclei, particles, fields" 859, 2008, 59–64.
Selivanova Z. M., Stasenko K. S.: Theoretical foundations for constructing intelligent information-measuring systems for tolerance control of thermal conductivity of heat-insulating materials: monograph. Publishing House of FGBOU VPO "TSTU", Tambov 2015.
Simdyankin S. I., Mousseau N.: Relationship between dynamical heterogeneities and stretched exponential relaxation. Physical Review E. 68(4), 2003, 104–110 [http://doi.org/10.1103/PhysRevE.68.041110].
DOI: https://doi.org/10.1103/PhysRevE.68.041110
Tonkoshkur A. S., Lozovskyi A. S.: Algorithm for processing gas sensor’s response kinetics data using extended exponential function without numerical differentiation. System technologies 1 (144), 2023, 24–34 [http://doi.org/10.34185/1562-9945-1-144-2023-04].
DOI: https://doi.org/10.34185/1562-9945-1-144-2023-04
Tonkoshkur A. S., Lozovskyi A. S.: Application for calculating the parameters of a gas sensor from the experimental kinetic dependence of response. System technologies 2(133), 2021, 26–32 [http://doi.org/10.34185/1562-9945-2-133-2021-04].
DOI: https://doi.org/10.34185/1562-9945-2-133-2021-04
Tonkoshkur A. S., Lyashkov A. Y., Povzlo E. L.: Kinetics of Response of ZnO-Ag Ceramics for Resistive Gas Sensor to the Impact of Methane, and its Analysis Using a Stretched Exponential Function. Sensors and Actuators B: Chemical 255, 2018, 1680–1686 [http://doi.org/10.1016/j.snb.2017.08.171].
DOI: https://doi.org/10.1016/j.snb.2017.08.171
Tonkoshkur O. S., Povzlo E. L.: Algorithm for data processing of response kinetics of a resistive gas sensor based on the stretched exponential function model. System technologies 1(108), 2017, 129–134.
Tonkoshkur Y. A., Glot A. B.: Isothermal depolarization current spectroscopy of localized states in metal oxide varistors. Journal of Physics D: Applied Physics 45, 2012, 465305 [http://doi.org/10.1088/0022-3727/45/46/465305].
DOI: https://doi.org/10.1088/0022-3727/45/46/465305
Torgaev S. N., Musorov I. S., Chertikhina D. S., Trygub M. V.: Practical guide to programming STM-microcontrollers. Tomsk Polytechnic University, Tomsk 2015.
Trzmiel J., Weron K., Janczura J., Placzek-Popko E.: Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cdl-xMnxTe mixed crystals. Journal of Physics Condensed Matter 21(34), 2009, 345801 [http://doi.org/10.1088/0953-8984/21/34/345801].
DOI: https://doi.org/10.1088/0953-8984/21/34/345801
Wang W. H.: Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science 106, 2019, 10056 [http://doi.org/10.1016/j.pmatsci.2019.03.006].
DOI: https://doi.org/10.1016/j.pmatsci.2019.03.006
Yuan Q. et al.: Aging Condition Assessment of XLPE Insulated Cables in Various Laying Environments Based on Isothermal Relaxation Current. IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), 2023, 1–4.
DOI: https://doi.org/10.1109/ICEMPE57831.2023.10139592
Programming in Windows Forms [https://metanit.com/sharp/windowsforms] (available: 10.06.2023).