STEROWANIE MPPT SYSTEMU PV: ANALIZA PORÓWNAWCZA ALGORYTMÓW P&O, INCCOND, SMC I FLC
Khoukha Bouguerra
khaoukha.bouguerra@yahoo.comFerhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS (Algieria)
https://orcid.org/0009-0008-4522-1532
Samia Latreche
Ferhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS (Algieria)
https://orcid.org/0000-0002-1496-739X
Hamza Khemlche
Research Centre in Industrial Technologies (Algieria)
https://orcid.org/0000-0002-7373-780X
Mabrouk Khemliche
Ferhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS (Algieria)
Abstrakt
Znaczenie energii słonecznej przejawia się w rosnącym zapotrzebowaniu na odnawialne źródła energii na całym świecie, które jest napędzane troską o środowisko i niedoborem energii konwencjonalnej. Trackery punktu maksymalnej mocy (MPPTS) są niezbędne w systemach energii słonecznej ze względu na zmiany atmosferyczne, które zagrażają wydajności systemów energii słonecznej. Niniejszy artykuł porównuje technologie MPPT. Pomimo wyników osiąganych przez klasyczne techniki w maksymalizacji i wydobywaniu jak największej ilości energii, napotykają one duży problem w osiągnięciu punktu energetycznego. Zapewniają to nowoczesne technologie, takie jak FLC i SMC. Zapewniają one wyjątkową dokładność i doskonałą reakcję we wszystkich warunkach środowiskowych, ale wiążą się z dodatkową złożonością i wyższymi kosztami. Technologie te są idealne w zastosowaniach wymagających wysokiej wydajności w stale zmieniających się warunkach lub w trudnych środowiskach (takich jak duże systemy energii słonecznej lub systemy radzące sobie z dużymi wahaniami oświetlenia). Niniejsze opracowanie ma na celu przeprowadzenie kompleksowych badań i porównanie klasycznych technologii (P&O i IncCond) oraz nowoczesnych technologii sterowania ślizgowego (SMC, Fuzzy Logic Control – FLC), biorąc pod uwagę czynniki takie jak wydajność, złożoność i czas reakcji. Testy przeprowadzono w różnych warunkach klimatycznych, aby zrozumieć i zwiększyć wydajność technologii MPPT. Nasze badanie podkreśla zwiększoną wydajność metod opartych na nowoczesnych technologiach. Opracowanie to zapewnia kompleksową analizę porównawczą, a poprzez poprawę wydajności i niezawodności systemów energii słonecznej, nasze badania wspierają rozwój zrównoważonych rozwiązań energetycznych.
Słowa kluczowe:
PV, konwerter DC/DC, techniki MPPT, sterowanie logiką rozmytą, sterowanie ślizgoweBibliografia
[1] Ahmad F. F. et al.: Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review. Annu Rev Control 49, 2020, 173–196 [https://doi.org/10.1016/j. arcontrol.2020.04.011].
DOI: https://doi.org/10.1016/j.arcontrol.2020.04.011
Google Scholar
[2] Bait F., Latreche S., Khemliche M.: Simulation of different faults in photovoltaic installation. 19th IEEE International Multi-Conference on Systems, Signals and Devices – SSD 2022, May 2022, 1130–1138.
DOI: https://doi.org/10.1109/SSD54932.2022.9955851
Google Scholar
[3] Belkaid A. et al.: Improving PV system performance using high efficiency fuzzy logic control. 8th International Conference on Smart Grid (icSmartGrid), 2020, 152–156.
DOI: https://doi.org/10.1109/icSmartGrid49881.2020.9144817
Google Scholar
[4] Chen J. H., Yau H. T., Hung W.: Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems. Energies 7(3), 2014, 1706–1720.
DOI: https://doi.org/10.3390/en7031706
Google Scholar
[5] Derri M. et al.: Maximum Power Point Tracking using Fuzzy Logic Controller for Stand Alone photovoltaic System. International Journal of Engineering Research and Technology 3(11), 2014, 1721–1725.
Google Scholar
[6] Djalab A., Teta A., Rezaoui M. M.: Analysis of MPPT Methods: P&O, INC and Fuzzy Logic (CLF) for a PV System. 6th International Conference on Control Engineering & Information Technology (CEIT). Turkey, Istanbul, 2018, 1–6.
DOI: https://doi.org/10.1109/CEIT.2018.8751820
Google Scholar
[7] D'Souza N. S., Lopes A. L., Liu X.: Comparative study of variable size perturbation and observation maximum power point trackers for PV systems. Electric Power Systems Research 80(3), 2010, 296–305.
DOI: https://doi.org/10.1016/j.epsr.2009.09.012
Google Scholar
[8] Fei J., Chen Y., Liu L., Fang Y.: Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller. IEEE transactions on cybernetics 2021, 1–16.
Google Scholar
[9] Haji D., Genc N.: Fuzzy and P&O based MPPT controllers under different conditions. 7th International Conference on Renewable Energy Research and Applications (ICRERA). 2018, 649–655.
DOI: https://doi.org/10.1109/ICRERA.2018.8566943
Google Scholar
[10] Jain K., Gupta M., Bohre A. K.: Implementation and comparative analysis of P&O and INC MPPT method for PV system. 8th IEEE India International Conference on Power Electronics (IICPE). India, Jaipur, 2018, 1–6.
DOI: https://doi.org/10.1109/IICPE.2018.8709519
Google Scholar
[11] Kish G. J., Lee J. J., Lehn P.W.: Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking. IET Renewable Power Generation 6, 2012, 259–266.
DOI: https://doi.org/10.1049/iet-rpg.2011.0052
Google Scholar
[12] Latreche S., Badoud A. E., Khemliche M.: Implementation of MPPT algorithm and supervision of shading on photovoltaic module. Engineering, Technology and Applied Science Research 8(6), 2018, 3541–3544.
DOI: https://doi.org/10.48084/etasr.2354
Google Scholar
[13] Levron Y., Shmilovitz D.: Maximum power point tracking employing sliding mode control. IEEE Transactions on Circuits and Systems I: Regular Papers 60(3), 2013, 724–732.
DOI: https://doi.org/10.1109/TCSI.2012.2215760
Google Scholar
[14] Moradi M. H. et al.: A robust hybrid method for maximum power point tracking in photovoltaic systems. Sol. Energy 94, 2013, 266–276.
DOI: https://doi.org/10.1016/j.solener.2013.05.016
Google Scholar
[15] Ram J. K. et al.: Performance enhancement of solar PV systems applying P&O assisted Flower Pollination Algorithm (FPA). Sol. Energy 199, 2020, 214–229 [https://doi.org/10.1016/j.solener.2020.02.019].
DOI: https://doi.org/10.1016/j.solener.2020.02.019
Google Scholar
[16] Salah B. C., Ouali M.: Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems. Electric Power Systems Resarch 81, 2011, 43–50.
DOI: https://doi.org/10.1016/j.epsr.2010.07.005
Google Scholar
[17] Tey K. S., Mekhilef S.: Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Sol. Energy 101, 2014, 333–342.
DOI: https://doi.org/10.1016/j.solener.2014.01.003
Google Scholar
[18] Zhu Y., Fei J.: Adaptive Global Fast Terminal Sliding Mode Control of Grid connected Photovoltaic System Using Fuzzy Neural Network Approach. IEEE Access 5, 2017, 9476–9484.
DOI: https://doi.org/10.1109/ACCESS.2017.2707668
Google Scholar
Autorzy
Khoukha Bouguerrakhaoukha.bouguerra@yahoo.com
Ferhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS Algieria
https://orcid.org/0009-0008-4522-1532
Autorzy
Samia LatrecheFerhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS Algieria
https://orcid.org/0000-0002-1496-739X
Autorzy
Hamza KhemlcheResearch Centre in Industrial Technologies Algieria
https://orcid.org/0000-0002-7373-780X
Autorzy
Mabrouk KhemlicheFerhat Abbas Sétif 1 University-UFAS, Electrical Engineering Department, Automatic Laboratory of Sétif-LAS Algieria
Researcher at Ferhat Abbas University of Setif
Statystyki
Abstract views: 89PDF downloads: 95