CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS

Olga Chaikovska


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-6489-6040

Oleksandr Ponomarenko


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-3058-7637

Olexandr Dovgan


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-8740-0650

Igor Rokunets


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0002-8255-6007

Sergii Pavlov

psv@vntu.edu.ua
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-0051-5560

Olena Kryvoviaz


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0001-5441-1903

Oleg Vlasenko


National Pirogov Memorial Medical University (Ukraine)
http://orcid.org/0000-0001-8759-630X

Abstract

Technologies for multichannel electrophysiology are experiencing astounding growth. Numbers of channels reach thousands of recording sites, systems are often combined with electrostimulations and optic stimulations. However, the task of design the cheap, flexible system for freely behaving animals without tethered cable are not solved completely. We propose the system for multichannel electrophysiology for both rats and mice. The system allows to record unit activity and local field potential (LFP) up to 32 channels with different types of electrodes. The system was constructed using Intan technologies RHD 2132 chip. Data acquisition and recordings take place on the DAQ-card, which is placed as a back-pack on the animal. The signal is amplified with amplifier cascade and digitalized with 16-bit ADC. Instrumental filters allow to filter the signal in 0.1–20000 Hz bandwidth. The system is powered from the mini-battery with capacity 340 mA/hr. The system was validated with generated signals, in anaesthetized rat and showed a high quality of recordings.


Keywords:

multichannel electrophysiology, freely behaving rodents, unit activity, local field potential

Al_Omari A. K., Saied H. F. I., Avrunin O. G.: Analysis of Changes of the Hydraulic Diameter and Determination of the Air Flow Modes in the Nasal Cavity. Image Processing and Communications Challenges 3. Springer, Berlin, Heidelberg 2011, [DOI: 10.1007/978-3-642-23154-4_34].
DOI: https://doi.org/10.1007/978-3-642-23154-4_34   Google Scholar

Alam M., Chen X., Fernandez E.: A low-cost multichannel wireless neural stimulation system for freely roaming animals. Journal of neural engineering 10(6), 2013, 066010.
DOI: https://doi.org/10.1088/1741-2560/10/6/066010   Google Scholar

Bennett C. et al.: Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102(2), 2019, 477–492.
DOI: https://doi.org/10.1016/j.neuron.2019.02.010   Google Scholar

Erickson J. C. et al.: Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system. Physiological measurement 39(3), 2018, 035008.
DOI: https://doi.org/10.1088/1361-6579/aaad51   Google Scholar

Fan D., Rich D., Holtzman T., Ruther P., Dalley J. W., Lopez A., et al.: A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), 2011, e22033, [DOI: 10.1371/journal.pone.0022033].
DOI: https://doi.org/10.1371/journal.pone.0022033   Google Scholar

Fyrmpas G. et al.: The value of bilateral simultaneous nasal spirometry in the assessment of patients undergoing septoplasty. Rhinology 49(3), 2011, 297–303.
  Google Scholar

Ghomashchi A. et al.: A low-cost, open-source, wireless electrophysiology system. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014.
DOI: https://doi.org/10.1109/EMBC.2014.6944288   Google Scholar

Juavinett A. L., Bekheet G., Churchland A. K.: Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, 2019, e47188.
DOI: https://doi.org/10.7554/eLife.47188   Google Scholar

Kinney J. P. et al.: A direct-to-drive neural data acquisition system. Frontiers in neural circuits 9, 2015, 46, [DOI: 10.3389/fncir.2015.00046].
DOI: https://doi.org/10.3389/fncir.2015.00046   Google Scholar

Laxpati N. G. et al.: Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Frontiers in neuroengineering 7, 2014, 40.
DOI: https://doi.org/10.3389/fneng.2014.00040   Google Scholar

Liang B., Ye X.: Towards high-density recording of brain-wide neural activity. Science China Materials 61, 2018, 432–434, [DOI: 10.1007/s40843-017-9175-3].
DOI: https://doi.org/10.1007/s40843-017-9175-3   Google Scholar

Moroz V. M. et al.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42(2), 2010, 110–117.
DOI: https://doi.org/10.1007/s11062-010-9138-4   Google Scholar

Newman J. P. et al.: Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform. Frontiers in neural circuits 6, 2013, 98.
DOI: https://doi.org/10.3389/fncir.2012.00098   Google Scholar

Nosova Ya. V., Faruk K. I., Avrunin O. G.: A tool for researching respiratory and olfaction disorders. Telecommunications and Radio Engineering 77(15), 2018, 1389–1395.
DOI: https://doi.org/10.1615/TelecomRadEng.v77.i15.90   Google Scholar

Rolston J. D., Gross R. E., Potter S. M.: NeuroRighter: closed-loop multielectrode stimulation and recording for freely moving animals and cell cultures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009.
DOI: https://doi.org/10.1109/IEMBS.2009.5333589   Google Scholar

Rotermund D. et al.: Open hardware: Towards a fully-wireless sub-cranial neuro-implant for measuring electrocorticography signals. BioRxiv 036855, 2017.
DOI: https://doi.org/10.1101/036855   Google Scholar

Siegle J. H. et al.: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current opinion in neurobiology 32, 2015, 53–59.
DOI: https://doi.org/10.1016/j.conb.2014.11.004   Google Scholar

Siegle J. H. et al.: Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. Journal of neural engineering 14(4), 2017, 045003.
DOI: https://doi.org/10.1088/1741-2552/aa5eea   Google Scholar

Sikes R. S., Gannon W. L.: Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92(1), 2011, 235–253.
DOI: https://doi.org/10.1644/10-MAMM-F-355.1   Google Scholar

Spivey R. J., Bishop Ch. M.: An implantable instrument for studying the long-term flight biology of migratory birds. Review of Scientific Instruments 85(1), 2014, 014301.
DOI: https://doi.org/10.1063/1.4854635   Google Scholar

Steinmetz N. A. et al.: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current opinion in neurobiology 50, 2018, 92–100.
DOI: https://doi.org/10.1016/j.conb.2018.01.009   Google Scholar

Steinmetz N. et al.: Dataset: simultaneous recording with two Neuropixels Phase3 electrode arrays. CortexLab at UCL, 2016.
  Google Scholar

Vlasenko O. et al.: Multichannel system for recording myocardial electrical activity. Information Technology in Medical Diagnostics II: Proceedings of the International Scientific Internet Conference “Computer Graphics and Image Processing" and the XLVIIIth International Scientific and Practical Conference “Application of Lasers in Medicine and Biology". CRC Press, 2019.
  Google Scholar

Vyssotski A. L. et al.: Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Journal of neurophysiology 95(2), 2006, 1263–1273.
DOI: https://doi.org/10.1152/jn.00879.2005   Google Scholar

Wagenaar D., DeMarse T. B., Potter S. M.: MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.
  Google Scholar

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. CRC Press, London 2019, [DOI: 10.1201/9780429057618].
DOI: https://doi.org/10.1201/9780429057618   Google Scholar

Woods V. et al.: A low-cost, 61-channel µECoG array for use in rodents. 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
DOI: https://doi.org/10.1109/NER.2015.7146687   Google Scholar

Yüzgeç Ö. et al.: Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology 28(3), 2018, 392–400.
DOI: https://doi.org/10.1016/j.cub.2017.12.049   Google Scholar

RHD2000 Series Digital Electrophysiology Interface Chips RHD2116, RHD2132. Intan Technologies, LLC. http://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
  Google Scholar

Download


Published
2019-12-15

Cited by

Chaikovska, O., Ponomarenko, O., Dovgan, O., Rokunets, I., Pavlov, S., Kryvoviaz, O., & Vlasenko, O. (2019). CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 64–68. https://doi.org/10.35784/iapgos.688

Authors

Olga Chaikovska 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-6489-6040

Authors

Oleksandr Ponomarenko 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-3058-7637

Authors

Olexandr Dovgan 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-8740-0650

Authors

Igor Rokunets 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0002-8255-6007

Authors

Sergii Pavlov 
psv@vntu.edu.ua
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-0051-5560

Authors

Olena Kryvoviaz 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0001-5441-1903

Authors

Oleg Vlasenko 

National Pirogov Memorial Medical University Ukraine
http://orcid.org/0000-0001-8759-630X

Statistics

Abstract views: 439
PDF downloads: 292


Most read articles by the same author(s)