Brain-Computer Interface based on EEG signals
Article Sidebar
Open full text
Published:
Dec 30, 2016
Issue Vol. 2 (2016)
Articles
-
Development and testing of applications created with the platforms Node.js and Laravel
Vasyl Bomba, Edyta Łukasik60-63
-
Brain-Computer Interface based on EEG signals
Leszek Marek, Małgorzata Plechawska-Wójcik64-69
-
Smartphone's Sound Testing in Home Setting
Marcin Ozimek70-75
-
Comparative analysis of visual programming RAD tools for C++ language.
Tetiana Pasikova, Elżbieta Miłosz76-80
-
Methods of linear and Lagrange interpolation to fill in 3D motion trajectory
Mateusz Pędzioł, Maria Skublewska-Paszkowska81-84
-
Performance analysis of Unity 3D environment in development of a character simulation
Aleksandra Woźniak, Małgorzata Plechawska-Wójcik85-88
-
Comparative analysis of jQuery Mobile library and Bootstrap framework in responsive websites development
Marta Wrońska, Małgorzata Plechawska-Wójcik89-92
-
Construction and animation of realistic biceps 3D model
Sebastian Poleszak, Piotr Kopniak93-97
-
Comparative analysis of tools dedicated to building Single Page Applications – AngularJs, ReactJS, Ember.js
Radosław Nowacki, Małgorzata Plechawska-Wójcik98-103
-
Optimal allocation of mobile device sound resources for game programming purposes
Arkadiusz Wrzos, Jakub Smołka104-107
-
Analysis of using educational mobile application with augmented reality in asimilate knowledge of the surrounding world
Łukasz Borek, Małgorzata Plechawska-Wójcik108-113
-
AngularJS and ReactJS libraries - performance analysis
Karol Kowalczyk, Małgorzata Plechawska-Wójcik114-119
-
The influence of the parallel programming on the performance of cryptographic algorithms
Mateusz Kraska, Piotr Kozieł120-126
-
Analysis of the possibility of managing the database stored in the cloud
Rafał Góźdź, Maria Skublewska-Paszkowska127-132
-
Comparison of the possible uses and performance analysis of databases on mobile operating systems Mateusz Grudzień*, Konrad Korgol*, Dariusz Gutek
Mateusz Grudzień, Konrad Korgol, Dariusz Gutek133-139
-
Comparative analysis of algorithms for solving Sudoku
Emil Wnuk, Edyta Łukasik140-143
Main Article Content
DOI
Authors
Leszek Marek
Lublin University of Technology, Poland
Małgorzata Plechawska-Wójcik
Lublin University of Technology, Poland
Abstract
The aim of the article is to test the brain-computer interface application using the SSVEP paradigm. During the realization of the project various methods of recording brain activity were tested, and the suitable acquisition device was chosen. Consecutive stages of the interface operation, which are data processing and classification, were presented in the OpenVibe environment. Finally, the usefulness and efficiency were estimated using a designed application.
Keywords:
Brain-Computer Interface; BCI; SVEEP; CSP; EEG
References
[1] A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing, ISBN:0470845899, (2002)
[2] J. Rowan, E. Tolunsky: Podstawy EEG z mini atlasem, Elsevier Urban & Partner, Wrocław, 2004.
[3] M. Jukiewicz: Praca magisterska pt. Klasyfikacja i analiza sygnału EEG na potrzeby interfejsu mózg-komputer, Wydział Elektryczny, Politechnika Poznańska, Poznań, 2012.
[4] J. Daly, J. Wolpaw, (2008). Brain-computer interfaces in neurological rehabilitation. Lancet Neurological, 7, 1032-1043
[5] E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: assessing the speed of a P300-based braincomputer interface, IEEE Trans Rehabil Eng, 8 (2000)
[6] J. Polich, Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol, 118 (2007)
[7] Hyekyoung Lee, A. Cichocki, Seungjin Choi, Kernel nonnegative matrix factorization for spectral EEG feature extraction, Neurocomputing 72 (2009)
[8] D. Regan, Steady-state evoked potentials. J Opt Soc Am 1977
[9] R. Rak, M. Kołodziej, Zastosowanie analizy częstotliwościowej sygnału EEG w interfejsach mózgkomputer, Przegląd Elektrotechniczny Nr 5 (2008).
[10] J. Ding, G. Sperling, R. Srinivasan, Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency, Cereb Cortex. 16 (2006)
[11] M.M. Jackson, R. Mappus, (2010). Applications for Brain-Computer Interfaces. W: D.S. Tan, A. Nijholt (red.), Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction (s.89-104). Londyn: Springer
[12] M. Kołodziej, Przetwarzanie, analiza i klasyfikacja sygnału EEG na użytek interfejsu mózg-komputer , Warszawa, 2011
[13] SSVEP: Steady-State Visual-Evoked Potentials, posted 2011, http://openvibe.inria.fr/steady-state-visual-evokedpotentials/ [12.09.2016]
[2] J. Rowan, E. Tolunsky: Podstawy EEG z mini atlasem, Elsevier Urban & Partner, Wrocław, 2004.
[3] M. Jukiewicz: Praca magisterska pt. Klasyfikacja i analiza sygnału EEG na potrzeby interfejsu mózg-komputer, Wydział Elektryczny, Politechnika Poznańska, Poznań, 2012.
[4] J. Daly, J. Wolpaw, (2008). Brain-computer interfaces in neurological rehabilitation. Lancet Neurological, 7, 1032-1043
[5] E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: assessing the speed of a P300-based braincomputer interface, IEEE Trans Rehabil Eng, 8 (2000)
[6] J. Polich, Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol, 118 (2007)
[7] Hyekyoung Lee, A. Cichocki, Seungjin Choi, Kernel nonnegative matrix factorization for spectral EEG feature extraction, Neurocomputing 72 (2009)
[8] D. Regan, Steady-state evoked potentials. J Opt Soc Am 1977
[9] R. Rak, M. Kołodziej, Zastosowanie analizy częstotliwościowej sygnału EEG w interfejsach mózgkomputer, Przegląd Elektrotechniczny Nr 5 (2008).
[10] J. Ding, G. Sperling, R. Srinivasan, Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency, Cereb Cortex. 16 (2006)
[11] M.M. Jackson, R. Mappus, (2010). Applications for Brain-Computer Interfaces. W: D.S. Tan, A. Nijholt (red.), Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction (s.89-104). Londyn: Springer
[12] M. Kołodziej, Przetwarzanie, analiza i klasyfikacja sygnału EEG na użytek interfejsu mózg-komputer , Warszawa, 2011
[13] SSVEP: Steady-State Visual-Evoked Potentials, posted 2011, http://openvibe.inria.fr/steady-state-visual-evokedpotentials/ [12.09.2016]
Article Details
Abstract views: 327
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
