Application of neural networks to the analysis of consumer opinions
Article Sidebar
Open full text
Published:
Dec 30, 2019
Issue Vol. 13 (2019)
Articles
-
Machine Learning as a method of adapting offers to the clients
Jacek Bielecki, Oskar Ceglarski, Maria Skublewska-Paszkowska267-271
-
The insulin activity model based on insulin profiles
Tomasz Nowicki272-278
-
UML – a survey on technical university students in Lublin
Kamil Żyła, Adam Ulidowski, Jan Wrzos, Bartłomiej Włodarczyk, Krzysztof Krocz, Patryk Drozd279-282
-
Overview of Big Data platforms
Gabriel Wróbel, Maciej Daniel Wikira283-287
-
Solutions for managing IT projects in the cloud
Grzegorz Szydlowski288-292
-
Performance analysis of the Symfony framework for creating modern web application based on selected versions
Aleksander Wójcik, Mateusz Wolski, Jakub Bartłomiej Smołka293-297
-
Comparative analysis of databases working under the control of Windows system
Serhii Stets, Grzegorz Kozieł298-301
-
Applying of machine learning in the construction of a voice-controlled interface on the example of a music player
Jakub Basiakowski302-309
-
Application of neural networks to the analysis of consumer opinions
Roman Mysan, Ivan Loichuk, Małgorzata Plechawska-Wójcik310-314
-
Comparative analysis of frameworks dedicated to enterprise designing
Katarzyna Curyła, Karolina Habernal315-322
-
Extraction of parameters from biometric data samples
Paweł Danek, Krzysztof Ćwirta, Piotr Kopniak323-331
-
WebAssembly as an alternative solution for JavaScript in developing modern web applications
Dawid Suryś, Piotr Szłapa, Maria Skublewska-Paszkowska332-338
-
Analysis of the defending possibilities against SQL Injection attacks
Chrystian Byzdra, Grzegorz Kozieł339-344
-
Comparison of 3D games’ efficiency with use of CRYENGINE and Unity game engines
Hubert Żukowski345-348
-
Research of an Entity-component-system architectural pattern designed with using of Data-oriented design technique
Dawid Masiukiewicz, Daniel Masiukiewicz, Jakub Smołka349-353
-
Comparative analysis of Kotlin and Java languages used to create applications for the Android system
Daniel Sulowski, Grzegorz Kozieł354-358
-
A performance comparison of garbage collector algorithms in Java Virtual Machine
Igor Kopeć, Jakub Smołka359-365
-
Innovative applications of digital solutions and tools in educating IT school students
Michalina Gryniewicz-Jaworska366-370
Main Article Content
DOI
Authors
Roman Mysan
Lublin University of Technology, Ukraine
Ivan Loichuk
Lublin University of Technology, Ukraine
Małgorzata Plechawska-Wójcik
Lublin University of Technology, Poland
Abstract
This paper presents an analysis of the possibilities of using neural networks to classify text data in the form of comments. Moreover, results of research of two neural network optimization methods: Adam and Gradient are presented. The aim of the work is to conduct research on the behavior of the neural network depending on the change of parameters and the amount of data used to teach the neural network. To achieve the goal, a test application was created. It uses a neural network to display the overall assessment of the accommodation facility based on the added user feedback.
Keywords:
neural network; TensorFlow; artificial intelligence
References
[1] M. Fábio, M. F. Alan, Neural network programming with Java, Packt Publishing, 2016
[2] P. D. Kingma, J. Lei Ba: Adam: a method for stochastic optimization, Published as a conference paper at ICLR 2015
[3] B. Yoshua, Practical Recommendations for Gradient-Based Training of Deep Architectures, Version 2, Sept. 16th, 2012
[4] K. Aurangzeb, B. Baharum, L. Lam Hong*, K. Khairullah, A Review of Machine Learning Algorithms for Text-Documents Classification, Journal of advances in information technology, vol. 1, no. 1, february 2010
[5] Y. Hongsuk, J. HeeJin, B. Sanghoon, Deep Neural Networks for traffic flow prediction, Published in: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)
[6] S. Ruder, An overview of gradient descent optimization algorithms∗, Insight Centre for Data Analytics, NUI Galway Aylien Ltd., Dublin, 15 Jun 2017
[7] M. Kaut, S. W. Wallace, Evaluation of scenario-generation methods for stochastic programming, March 2007
[8] https://www.wired.com/2016/06/how-google-is-remaking-itself-as-a-machine-learning-first-company/ [22.06.2019]
[9] P. Lula, Text-mining jaką narzędzie pozyskiwania informacji z dokumentów tekstowych, Akademia Ekonomiczna w Krakowie, Katefra Informatyki, 2005
[10] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification, 6 Jul 2016
[11] Z. Min-Ling, Z. Zhi-Hua, Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 28 August 2006
[12] S. Fabrizio, Machine learning in automated text categorization, March 2002
[2] P. D. Kingma, J. Lei Ba: Adam: a method for stochastic optimization, Published as a conference paper at ICLR 2015
[3] B. Yoshua, Practical Recommendations for Gradient-Based Training of Deep Architectures, Version 2, Sept. 16th, 2012
[4] K. Aurangzeb, B. Baharum, L. Lam Hong*, K. Khairullah, A Review of Machine Learning Algorithms for Text-Documents Classification, Journal of advances in information technology, vol. 1, no. 1, february 2010
[5] Y. Hongsuk, J. HeeJin, B. Sanghoon, Deep Neural Networks for traffic flow prediction, Published in: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)
[6] S. Ruder, An overview of gradient descent optimization algorithms∗, Insight Centre for Data Analytics, NUI Galway Aylien Ltd., Dublin, 15 Jun 2017
[7] M. Kaut, S. W. Wallace, Evaluation of scenario-generation methods for stochastic programming, March 2007
[8] https://www.wired.com/2016/06/how-google-is-remaking-itself-as-a-machine-learning-first-company/ [22.06.2019]
[9] P. Lula, Text-mining jaką narzędzie pozyskiwania informacji z dokumentów tekstowych, Akademia Ekonomiczna w Krakowie, Katefra Informatyki, 2005
[10] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification, 6 Jul 2016
[11] Z. Min-Ling, Z. Zhi-Hua, Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 28 August 2006
[12] S. Fabrizio, Machine learning in automated text categorization, March 2002
Article Details
Mysan, R., Loichuk, I., & Plechawska-Wójcik, M. (2019). Application of neural networks to the analysis of consumer opinions . Journal of Computer Sciences Institute, 13, 310–314. https://doi.org/10.35784/jcsi.1325
Abstract views: 336
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
