Application of neural networks to the analysis of consumer opinions

Roman Mysan

roman.mysan@pollub.edu.pl
Lublin University of Technology (Ukraine)

Ivan Loichuk


Lublin University of Technology (Ukraine)

Małgorzata Plechawska-Wójcik


Lublin University of Technology (Poland)

Abstract

This paper presents an analysis of the possibilities of using neural networks to classify text data in the form of comments. Moreover, results of research of two neural network optimization methods: Adam and Gradient are presented. The aim of the work is to conduct research on the behavior of the neural network depending on the change of parameters and the amount of data used to teach the neural network. To achieve the goal, a test application was created. It uses a neural network to display the overall assessment of the accommodation facility based on the added user feedback.


Keywords:

neural network; TensorFlow; artificial intelligence

[1] M. Fábio, M. F. Alan, Neural network programming with Java, Packt Publishing, 2016
[2] P. D. Kingma, J. Lei Ba: Adam: a method for stochastic optimization, Published as a conference paper at ICLR 2015
[3] B. Yoshua, Practical Recommendations for Gradient-Based Training of Deep Architectures, Version 2, Sept. 16th, 2012
[4] K. Aurangzeb, B. Baharum, L. Lam Hong*, K. Khairullah, A Review of Machine Learning Algorithms for Text-Documents Classification, Journal of advances in information technology, vol. 1, no. 1, february 2010
[5] Y. Hongsuk, J. HeeJin, B. Sanghoon, Deep Neural Networks for traffic flow prediction, Published in: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)
[6] S. Ruder, An overview of gradient descent optimization algorithms∗, Insight Centre for Data Analytics, NUI Galway Aylien Ltd., Dublin, 15 Jun 2017
[7] M. Kaut, S. W. Wallace, Evaluation of scenario-generation methods for stochastic programming, March 2007
[8] https://www.wired.com/2016/06/how-google-is-remaking-itself-as-a-machine-learning-first-company/ [22.06.2019]
[9] P. Lula, Text-mining jaką narzędzie pozyskiwania informacji z dokumentów tekstowych, Akademia Ekonomiczna w Krakowie, Katefra Informatyki, 2005
[10] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification, 6 Jul 2016
[11] Z. Min-Ling, Z. Zhi-Hua, Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization, 28 August 2006
[12] S. Fabrizio, Machine learning in automated text categorization, March 2002
Download


Published
2019-12-30

Cited by

Mysan, R., Loichuk, I., & Plechawska-Wójcik, M. (2019). Application of neural networks to the analysis of consumer opinions . Journal of Computer Sciences Institute, 13, 310–314. https://doi.org/10.35784/jcsi.1325

Authors

Roman Mysan 
roman.mysan@pollub.edu.pl
Lublin University of Technology Ukraine

Authors

Ivan Loichuk 

Lublin University of Technology Ukraine

Authors

Małgorzata Plechawska-Wójcik 

Lublin University of Technology Poland

Statistics

Abstract views: 253
PDF downloads: 240