Application of support vector machine in a traffic lights control
Article Sidebar
Open full text
Published:
Mar 30, 2020
Issue Vol. 14 (2020)
Articles
-
Perfomance analysis of relational databases MySQL, PostgreSQL, MariaDB and H2
Katarzyna Krocz, Oleksandra Kizun, Maria Skublewska-Paszkowska1-7
-
Applications supporting utilization of agile methods in software development process
Tomasz Bławucki, Siarhei Ramanovich, Maria Skublewska-Paszkowska8-13
-
An assessment of portal to learn foreign languages
Marek Szmit, Paweł Wojtaszko, Grzegorz Kozieł14-18
-
Functional and performance analysis of selected message brokers in a distributed application
Tobiasz Kaciuczyk, Tomasz Korga, Jakub Smołka19-25
-
Comparative analysis of Windows Presentation Foundation and Windows Forms
Michał Pasztaleniec, Maria Skublewska-Paszkowska26-30
-
Impact of the cloud application programming language on the performance of its implementation in selected serverless environments
Krzysztof Bezrąk, Sławomir Przyłucki31-36
-
Application of support vector machine in a traffic lights control
Artur Całuch, Adam Cieślikowski, Małgorzata Plechawska-Wójcik37-42
-
Comparison of GreenDao and Room ORM Systems
Maciej Lewiński43-47
-
An Assessment of IT Students' Awareness in the Field of Instant Messengers Security
Paweł Stręciwilk, Grzegorz Kozieł48-54
-
Methods of determining indicators of similarity of 3D motion
Piotr Flisiak, Marcin Kuszyk55-58
-
Perfomance analysis of frameworks Angular and Vue.js
Roman Baida, Maksym Andriienko, Małgorzata Plechawska-Wójcik59-64
-
Possibility analysis of applying serious game to learn the first aid procedures
Klaudia Zaborek, Małgorzata Plechawska-Wójcik65-72
-
Comparison of the performance of tools for creating a SPA application interface - React and Vue.js
Krzysztof Boczkowski, Beata Pańczyk73-77
-
Comparative analysis of view technologies for the Spring application
Vadym Borys, Roman Slezenko, Beata Pańczyk78-81
-
Performance analysis of selected tools for building a Single Page Application
Yehor Timanovskyi, Małgorzata Plechawska-Wójcik82-87
-
Analysis of selected usability assessment methods in the process of creating web applications
Krzysztof Nowak, Daniel Samolej88-93
-
Performance analysis of selected database systems: MySQL, MS SQL, PostgerSQL in the context of web applications
Katarzyna Lachewicz94-100
-
Methods of creating realistic spaces – 3D scanning and 3D modelling
Aleksandra Salwierz, Tomasz Szymczyk101-108
Main Article Content
DOI
Authors
Artur Całuch
Lublin University of Technology, Poland
Adam Cieślikowski
Lublin University of Technology, Poland
Małgorzata Plechawska-Wójcik
Lublin University of Technology, Poland
Abstract
This article presents the process of adapting support vector machine model’s parameters used for studying the effect of traffic light cycle length parameter’s value on traffic quality. The survey is carried out using data collected during running simulations in author’s traffic simulator. The article shows results of searching for optimum traffic light cycle length parameter’s value.
Keywords:
machine learning; traffic simulator; support vector machine
References
[1] Abdoos M., Mozayani N., Bazzan A. L. C.,Traffic Light Control in Non-stationary Environments based on Multi Agent Q-learning, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), s. 1580 - 1585, 2011
[2] El-Tantawy S., Abdulhai B., An Agent-Based Learning Towards Decentralized and Coordinated Traffic Signal Control, 13th International IEEE Conference on Intelligent Transportation Systems, s. 665 - 670, 2010
[3] Gao J., Shen Y., Liu J., Ito M., Shiratori S., Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network, arXiv:1705.02755, 2017
[4] Jin J., Ma X., A group-based traffic signal control with adaptive learning ability, Engineering applications of artificial intelligence, s. 282-293, 2017
[5] Kuyer L., Whiteson S., Bakker B., Vlassis N., Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs, Obrady ECML/PKDD, Antwerp, Belgia, s.656–671,2008
[6] Liu Y., Liu L., Chen W., Intelligent Traffic Light Control Using Distributed Multi-agent Q Learning, IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Październik 2017
[7] Lu S., Liu X., Dai S., Q-Learning for Adaptive Traffic Signal Control Based on Delay Minimization Strategy, 2008 IEEE International Conference on Networking, Sensing and Control, s. 687-691, 2008
[8] Mousav S. S., Schukat M., Howley E., Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning, IET Intelligent Transport System, vol.11 No.7, s. 417-423, Wrzesień 2017
[9] Pierre-Luc G., Desjardins C., Laumonier J., Chaib-draa B., Urban Traffic Control Based on Learning Agents, 2007 IEEE Intelligent Transportation Systems Conference, s. 916-921, 2007
[10] van der Pol E. Oliehoek F. A., Coordinated Deep Reinforcement Learners for Traffic Light Control, Artykuły naukowe Uniwersytetu Amsterdamskiego, 2016
[2] El-Tantawy S., Abdulhai B., An Agent-Based Learning Towards Decentralized and Coordinated Traffic Signal Control, 13th International IEEE Conference on Intelligent Transportation Systems, s. 665 - 670, 2010
[3] Gao J., Shen Y., Liu J., Ito M., Shiratori S., Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network, arXiv:1705.02755, 2017
[4] Jin J., Ma X., A group-based traffic signal control with adaptive learning ability, Engineering applications of artificial intelligence, s. 282-293, 2017
[5] Kuyer L., Whiteson S., Bakker B., Vlassis N., Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs, Obrady ECML/PKDD, Antwerp, Belgia, s.656–671,2008
[6] Liu Y., Liu L., Chen W., Intelligent Traffic Light Control Using Distributed Multi-agent Q Learning, IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Październik 2017
[7] Lu S., Liu X., Dai S., Q-Learning for Adaptive Traffic Signal Control Based on Delay Minimization Strategy, 2008 IEEE International Conference on Networking, Sensing and Control, s. 687-691, 2008
[8] Mousav S. S., Schukat M., Howley E., Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning, IET Intelligent Transport System, vol.11 No.7, s. 417-423, Wrzesień 2017
[9] Pierre-Luc G., Desjardins C., Laumonier J., Chaib-draa B., Urban Traffic Control Based on Learning Agents, 2007 IEEE Intelligent Transportation Systems Conference, s. 916-921, 2007
[10] van der Pol E. Oliehoek F. A., Coordinated Deep Reinforcement Learners for Traffic Light Control, Artykuły naukowe Uniwersytetu Amsterdamskiego, 2016
Article Details
Całuch, A., Cieślikowski, A., & Plechawska-Wójcik, M. (2020). Application of support vector machine in a traffic lights control. Journal of Computer Sciences Institute, 14, 37–42. https://doi.org/10.35784/jcsi.1573
Abstract views: 318
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
