T. Urruty, S. Lew, N. Ihadaddene and D. A. Simovici, Detecting eye fixations by projection clustering. ACM Transaction on Multimedia Computing, Communications and Application, 3 (4), 5:1–5:20, 2007
DOI: https://doi.org/10.1145/1314303.1314308
N. Flad, T. Fomina, H. H. Buelthoff and L. L. Chuang, Unsupervised Clustering of EOG as a Viable Substitute for Optical Eye Tracking. Eye Tracking and Visualization, Cham, 2017, 151–167
DOI: https://doi.org/10.1007/978-3-319-47024-5_9
R. S. Hessels, D. C. Niehorster, C. Kemner and I. T. C. Hooge Noise-robust fixation detection in eye movement data: Identification by two-means clustering (I2MC). Behaviour Research Methods, 49 (5), 1802–1823, 2017
DOI: https://doi.org/10.3758/s13428-016-0822-1
J. Otero-Millan, J. L. A. Castro, S. L. Macknik and S. Martinez-Conde Unsupervised clustering method to detect microsaccades. Journal of Vision, 14 (2), 18–18, 2014
DOI: https://doi.org/10.1167/14.2.18
A. Santella and D. DeCarlo Robust clustering of eye movement recordings for quantification of visual interest. Proceedings of the 2004 symposium on Eye tracking research & applications, San Antonio, Texas, 2004, 27–34
DOI: https://doi.org/10.1145/968363.968368
P. K. Mital, T. J. Smith, R. L. Hill and J. M. Henderson, Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion. Cognitive Computation, 3 (1), 5–24, 2011
DOI: https://doi.org/10.1007/s12559-010-9074-z
Z. Kang and S. J. Landry An Eye Movement Analysis Algorithm for a Multielement Target Tracking Task: Maximum Transition-Based Agglomerative Hierarchical Clustering. IEEE Transactions on Human-Machine Systems, 45 (1), 13–24, 2015
DOI: https://doi.org/10.1109/THMS.2014.2363121
M. Aamir and S. M. A. Zaidi Clustering based semi-supervised machine learning for DDoS attack classification. Journal of King Saud University - Computer Information Sciences, 2019
DOI: https://doi.org/10.1016/j.jksuci.2019.02.003
K. Liang, Y. Chahir, M. Molina, C. Tijus and F. Jouen Appearance-based gaze tracking with spectral clustering and semi-supervised Gaussian process regression. Proceedings of the 2013 Conference on Eye Tracking South Africa, Cape Town, South Africa, 2013, 17–23
DOI: https://doi.org/10.1145/2509315.2509318
K. Wang, B. Wang and L. Peng CVAP: Validation for Cluster Analyses. Data Science Journal, 8 (0), 88–93, 2009
DOI: https://doi.org/10.2481/dsj.007-020
A. Thalamuthu, I. Mukhopadhyay, X. Zheng and G. C. Tseng Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics (Oxford, England), 22 (19), 2405–2412, 2006
DOI: https://doi.org/10.1093/bioinformatics/btl406
S. Dudoit and J. Fridlyand A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3 (7), 2002
DOI: https://doi.org/10.1186/gb-2002-3-7-research0036
T. Caliński and J. Harabasz A dendrite method for cluster analysis. Communications in Statistic, 3 (1), 1–27, 1974
DOI: https://doi.org/10.1080/03610917408548446
P. J. Rousseeuw Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65, 1987
DOI: https://doi.org/10.1016/0377-0427(87)90125-7
D. L. Davies and D. W. Bouldin A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 (2), 224–227, 1979
DOI: https://doi.org/10.1109/TPAMI.1979.4766909
C. Boake From the Binet-Simon to the Wechsler-Bellevue: tracing the history of intelligence testing. Journal of Clinical and Experimental Neuropsychology, 24 (3), 383–405, 2002
DOI: https://doi.org/10.1076/jcen.24.3.383.981
V. Sicard, R. D. Moore, i D. Ellemberg Sensitivity of the Cogstate Test Battery for Detecting Prolonged Cognitive Alterations Stemming From Sport-Related Concussions. Clinical Journal of Sport Medicine: Official Journal Canadian Academy Sport Medicine,29 (1), 62–6
DOI: https://doi.org/10.1097/JSM.0000000000000492