The use of CPU and GPU for calculations in Matlab
Article Sidebar
Open full text
Published:
Mar 30, 2019
Issue Vol. 10 (2019)
Articles
-
Comparison of tools for creating SPA applications using the examples of Angular2 and React
Jadwiga Kalinowska, Beata Pańczyk1-4
-
Recording using a motion capture system and a mobile device with synchronization of the recording triggering
Karol Walczyna, Bartosz Jasiński, Jakub Smołka, Mateusz Miziołek5-11
-
Angle measurement accuracy assessment using inertial sensors in threedimensional coordinate system
Mateusz Miziołek12-17
-
Modification of path-finding algorithms introducing time and distance limitations
Mateusz Wolanin, Klaudia Korniszuk, Jakub Smołka18-23
-
Performance analysis of methods for building applications on the Salesforce platform
Damian Miącz24-27
-
Analysis of the possibilities of testing SPA applications on the example of Selenium and Protractor tools
Mateusz Szpinda, Małgorzata Plechawska-Wójcik28-31
-
The use of CPU and GPU for calculations in Matlab
Jarosław Woźniak32-35
-
Comparative analysis of VR goggles
Łukasz Pełka, Łukasz Podstawka, Tomasz Szymczyk36-43
-
Evaluation of methods for computing athlete’s energy expenditure implemented on Android devices
Sylwester Muzyka, Piotr Wójcik, Jakub Smołka44-48
-
Multithreaded programming in structural and object-oriented languages
Mateusz Wiśniewski49-53
-
The use of postprocessing and its impact on rendering performance in the Unreal Engine 4
Eryk Puławski, Marcin Tokarski54-61
-
Analysis of the quality of web application interface using eye-tracking – a case study
Marcin Jusiak, Marek Miłosz62-66
-
Comparison of the effectiveness of selected face recognition algorithms for poor quality photos
Jakub Gozdur, Bartosz Wiśniewski, Piotr Kopniak67-70
-
Comparison of new ways of creating PHP applications using Laravel and CodeIgniter example
Daniel Drabik71-76
-
Implementation of management support tools projects in IT companies
Radosław Albiniak, Elżbieta Miłosz77-81
Main Article Content
DOI
Authors
Jarosław Woźniak
jaroslaw.wozniak@pollub.edu.pl
Lublin University of Technology, Poland
Abstract
The article presents selected solutions using CPU processors and GPUs for calculations in the Matlab environment. Various methods of performing calculations on the CPU as well as on the GPU were compared. Differences, disadvantages, advantages and effects of using selected calculation methods have been indicated.
Keywords:
CPU; GPU; Matlab
References
[1] MATLAB Product Description - MathWorks Documentation, https://www.mathworks.com/help/matlab/learn_matlab/product-description.html [01.08.2018]
[2] K. Banasiak, Algorytmizacja i programowanie w MATLABIE, Wydawnictwo BTC, 2017.
[3] Parallel Computing Toolbox - Documentation, https://www.mathworks.com/help/distcomp/ [01.08.2018].
[4] J. W. Sut, Y. Kim, MATLAB and Parallel Computing Toolbox, 2014, 99-125.
[5] Obliczenia równoległe w środowisku Matlab - MathWorks Video and Webinars, https://www.mathworks.com/videos/parallel-computing-in-matlab-116769.html [01.08.2018].
[6] B. Mrozek, „Obliczenia równoległe w Matlab-ie,” Pomiary Automatyka Robotyka, tom R. 15, nr 2, pp. 285-294, 2011.
[7] I. Azzini, R. Muresano, M. Ratto, Dragonfly: A multi-platform parallel toolbox for MATLAB/Octave, 2018, 21-42.
[8] What is GPU computing?, https://www.boston.co.uk/info/nvidiakepler/what-is-gpu-computing.aspx [01.08.2018].
[9] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden. X. Cai, CPU+GPU Programming of Stencil Computations for Resource-Efficient Use of GPU Clusters, 2015, 17-26.
[10] Using parfor-loop - MathWorks Documentation, https://www.mathworks.com/help/distcomp/interactively-run-aloop-in-parallel.html#responsive_offcanvas [01.08.2018].
[11] What Is Parallel Computing?, https://www.mathworks.com/help/distcomp/what-is-parallel-computing.html [01.08.2018].
[12] Using FFT on the GPU for Spectral Analysis MathWorks –Documentation, https://www.mathworks.com/help/distcomp/examples/using-fft-on-the-gpu-for-spectral-analysis.html [01.08.2018].
[13] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Welling, M. Kohler, Preconditioned Krylov solvers on GPUs, 2017, 32-44.
[2] K. Banasiak, Algorytmizacja i programowanie w MATLABIE, Wydawnictwo BTC, 2017.
[3] Parallel Computing Toolbox - Documentation, https://www.mathworks.com/help/distcomp/ [01.08.2018].
[4] J. W. Sut, Y. Kim, MATLAB and Parallel Computing Toolbox, 2014, 99-125.
[5] Obliczenia równoległe w środowisku Matlab - MathWorks Video and Webinars, https://www.mathworks.com/videos/parallel-computing-in-matlab-116769.html [01.08.2018].
[6] B. Mrozek, „Obliczenia równoległe w Matlab-ie,” Pomiary Automatyka Robotyka, tom R. 15, nr 2, pp. 285-294, 2011.
[7] I. Azzini, R. Muresano, M. Ratto, Dragonfly: A multi-platform parallel toolbox for MATLAB/Octave, 2018, 21-42.
[8] What is GPU computing?, https://www.boston.co.uk/info/nvidiakepler/what-is-gpu-computing.aspx [01.08.2018].
[9] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden. X. Cai, CPU+GPU Programming of Stencil Computations for Resource-Efficient Use of GPU Clusters, 2015, 17-26.
[10] Using parfor-loop - MathWorks Documentation, https://www.mathworks.com/help/distcomp/interactively-run-aloop-in-parallel.html#responsive_offcanvas [01.08.2018].
[11] What Is Parallel Computing?, https://www.mathworks.com/help/distcomp/what-is-parallel-computing.html [01.08.2018].
[12] Using FFT on the GPU for Spectral Analysis MathWorks –Documentation, https://www.mathworks.com/help/distcomp/examples/using-fft-on-the-gpu-for-spectral-analysis.html [01.08.2018].
[13] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Welling, M. Kohler, Preconditioned Krylov solvers on GPUs, 2017, 32-44.
Article Details
Abstract views: 234
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
