Neural networks in recognition of handwriting
Article Sidebar
Open full text
Issue Vol. 15 (2020)
-
Neural networks in recognition of handwriting
Bernadetta Michalik, Marek Miłosz109-113
-
Influence the quality of the interface of online stores on their memorability
Katarzyna Pytka, Marek Miłosz114-120
-
Comparison of the NFC authentication method with the methods available in Android
Dmytro Malenko121-125
-
Comparative analysis of database systems dedicated for Android
Kamil Wałachowski, Grzegorz Kozieł126-132
-
Digital services in Poland and the Far East - comparative analysis
Dominik Klej133-138
-
Modern technologies for creating graphical user interface in web applications
Mateusz Kaproń, Beata Pańczyk139-142
-
Verification of the precision of GSM and GPS signals available on mobile devices
Mateusz Wlaź, Grzegorz Kozieł143-149
-
Corporate intranet platform – open and commercial solutions comparison
Konrad Czarny150-155
-
Comparative analysis of solutions used in automated testing
Agnieszka Dorota Wac, Tomasz Kamil Watras, Grzegorz Kozieł156-163
-
Analysis of the vulnerability of IT system users to a phishing attack
Szymon Grzebielec164-167
-
Contactless interfaces in virtual reality
Andriy Dragni, Tomasz Szymczyk168-171
-
The system using mobile technologies to test reaction time
Michał Woś, Artur Zdzioch172-177
-
Comparative analysis of a selected version of the Symfony framework
Michał Jusięga, Mariusz Dzieńkowski178-183
-
Containerization methods in internet service applications
Krzysztof Ferenc184-188
-
Performance analysis of languages working on Java Virtual Machine based on Java, Scala and Kotlin
Katarzyna Buszewicz189-195
-
The "Quizer" e-learning platform as a tool for creating interactive quizzes with multiplayer functionality
Krzysztof Dziedzic, Marek Gudków, Tomasz Wiśniewski196-201
-
Analysis of typical programming mistakes made by first and second year IT students
Monika Kaczorowska202-205
-
Object classification using X-ray images
Piotr Nowosad, Małgorzata Charytanowicz206-213
-
Semi-supervised learning with the clustering and Decision Trees classifier for the task of cognitive workload study
Martyna Wawrzyk214-218
Main Article Content
DOI
Authors
Abstract
Artificial neural networks consist of many simple elements capable of processing data. These are tools inspired by the construction of the human brain, used in machine learning. The aim of the research was to analyze the occuracy of the created neural network in the process of handwriting recognition. The article presents the results obtained during the learning and testing of a convolution network with a different number of hidden layers. Each time learning and testing the network was carried out using the same set of images (taken from the publicly available IAM database) depicting handwritten words in English.
Keywords:
References
R. Tadeusiewicz, M. Szaleniec, Leksykon sieci neuronowych. Wydawnictwo Fundacji "Projekt Nauka" (2015).
K. Różanowski, Sztuczna inteligencja rozwój, szanse i zagrożenia. Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki (2007).
R. Mithe, S. Indalkar, N. Divekar, Optical character recognition. International journal of recent technology and engineering (IJRTE), 2 (2013) 72-75.
H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2015) 5325-5334. DOI: https://doi.org/10.1109/CVPR.2015.7299170
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature, 521 (2015) 436-444. DOI: https://doi.org/10.1038/nature14539
M. Liang, H. Hu, Recurrent convolutional neural network for object recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2015) 3367-3375.
Y. Ma, Z. Xiang, Q. Du, W. Fan, Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71 (2018) 120-131. DOI: https://doi.org/10.1016/j.ijhm.2017.12.008
Y. Hou, H. Zhao, Handwritten digit recognition based on depth neural network. International Conference on Intelligent Informatics and Biomedical Sciences, Okinawa, 2017. DOI: https://doi.org/10.1109/ICIIBMS.2017.8279710
S. Albawi, T. A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET), (2017) 1-6 . DOI: https://doi.org/10.1109/ICEngTechnol.2017.8308186
T. N. Sainath, A. R. Mohamed, B. Kingsbury, B. Ramabhadran, Deep convolutional neural networks for LVCSR. In 2013 IEEE international conference on acoustics, speech and signal processing, (2013) 8614-8618. DOI: https://doi.org/10.1109/ICASSP.2013.6639347
http://www.fki.inf.unibe.ch/databases/iam-handwriting-database [05.02.2019]
Article Details
Abstract views: 507
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
