Blender as a tool for generating synthetic data
Article Sidebar
Open full text
Issue Vol. 16 (2020)
-
Java and Kotlin code performance in selected web frameworks
Grzegorz Bujnowski, Jakub Smołka219-226
-
Blender as a tool for generating synthetic data
Rafał Sieczka, Maciej Pańczyk227-232
-
Analysis of selected methods of creating artificial intelligence on the example of a popular card game
Łukasz Gałka, Mariusz Dzieńkowski233-240
-
Comparative analysis of Kotlin coroutines with Java and Scala in parallel programming
Adrian Zieliński241-246
-
Performance testing of STL and Qt library elements in multi-threaded processing
Piotr Krasowski, Jakub Smołka247-251
-
A security analysis of authentication and authorization implemented in web applications based on the REST architecture
Tomasz Muszyński, Grzegorz Koziel252-260
-
Analysis of security CMS platforms by vulnerability scanners
Patryk Zamościński, Grzegorz Kozieł261-268
-
Analysis of the Blazor framework in client-hosted mode
Karol Kozak, Jakub Smołka269-273
-
Implementation of solutions for distributed team management in IT sector companies
Mykhailo Kuzyk, Elżbieta Miłosz274-278
-
Comparison of MySQL, MSSQL, PostgreSQL, Oracle databases performance, including virtualization
Wojciech Truskowski, Rafał Klewek, Maria Skublewska-Paszkowska279-284
-
Comparative analysis of selected object-relational mapping systems for the .NET platform
Krzysztof Drzazga, Marcin Bobel, Maria Skublewska-Paszkowska285-292
-
Analysis of the use of Java and C# languages for building a mobile application for the Android platform.
Michał Jankowski, Maria Skublewska-Paszkowska293-299
-
Performance comparison of chosen JSON parsers and a parser that employs a different reading method
Przemysław Koter300-304
-
Comparison of Objective-C and Swift on the example of a mobile game
Karolina Banach, Maria Skublewska-Paszkowska305-308
-
Comparison of REST and GraphQL web technology performance
Mateusz Mikuła, Mariusz Dzieńkowski309-316
-
The analysis of air pollution based on laser beam photo
Rafał Maksim, Anna Pawelec, Maria Skublewska-Paszkowska317-325
Main Article Content
DOI
Authors
Abstract
Acquiring data for neural network training is an expensive and labour-intensive task, especially when such data is
difficult to access. This article proposes the use of 3D Blender graphics software as a tool to automatically generate
synthetic image data on the example of price labels. Using the fastai library, price label classifiers were trained on
a set of synthetic data, which were compared with classifiers trained on a real data set. The comparison of the results
showed that it is possible to use Blender to generate synthetic data. This allows for a significant acceleration of the
data acquisition process and consequently, the learning process of neural networks.
Keywords:
References
A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep learning for computer vision: A brief review, Computational intelligence and neuroscience (2018). DOI: https://doi.org/10.1155/2018/7068349
Z. Cao, G. Martinez, T. Simon, S. Wei, Y. A. Sheikh, Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) 7291-7299.
T Simon, H Joo, I Matthews, Y Sheikh, Hand keypoint detection in single images using multiview bootstrapping, CVPR (2017) 1145-1153. DOI: https://doi.org/10.1109/CVPR.2017.494
Z Cao, T Simon, S EnWei, Y. Sheikh, Realtime multiperson 2d pose estimation using part affinity fields, CVPR (2017) 7291-7299. DOI: https://doi.org/10.1109/CVPR.2017.143
S. En Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Convolutional pose machines, CVPR (2016) 4724-4732. DOI: https://doi.org/10.1109/CVPR.2016.511
Y. Roh, G. Heo, S. E. Whang. A survey on data collection for machine learning: a big data – ai integration perspective, IEEE Transactions on Knowledge and Data Engineering (2019). DOI: https://doi.org/10.1109/TKDE.2019.2946162
C. Xie, L. Vedaldi, P. Zisserman. Vgg-sound: A largescale audio-visual dataset (2020).
S. Reddy, M. Mathew, L. Gomez, M. Rusinol, D. Karatzas., C. V. Jawahar, Roadtext-1k: Text detection and recognition dataset for driving videos, 2020 IEEE International Conference on Robotics and Automation (2020) 11074-11080. DOI: https://doi.org/10.1109/ICRA40945.2020.9196577
S. Hesai, Pandaset - public large-scale dataset for autonomous driving.
J. Zhao, Y. Zhang, X. He, P. Xie. covid-ct-dataset: a ct scan dataset about covid-19. arXiv preprint arXiv:2003.13865 (2020).
Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018).
A.Tsirikoglou, J. Kronander, M. Wrenninge, J. Unger, Procedural modeling and physically based rendering for synthetic data generation in automotive applications, arXiv preprint arXiv:1710.06270 (2017).
A. Gaidon, Q. Wang, Y. Cabon, E. Vig, Virtual worlds as proxy for multi-object tracking analysis, proceedings of the IEEE conference on computer vision and pattern recognition (2016) 4340-4349. DOI: https://doi.org/10.1109/CVPR.2016.470
M. Muller, V. Casser, J. Lahoud, N. Smith, B. Ghanem, Sim4cv: A photo-realistic simulator for computer vision applications, International Journal of Computer Vision, 126(9) (2018) 902-919.
J. McCormac, A. Handa, S. Leutenegger, A. J. Davison, Scenenet rgb-d: 5m photorealistic images of synthetic indoor trajectories with ground truth, arXiv preprint arXiv:1612.05079 (2016).
Y. Zhang, W. Qiu, Q. Chen, X. Hu, A. Yuille, Unrealstereo: Controlling hazardous factors to analyze stereo vision, in proceedings of International Conference on 3D Vision (3DV) (2018) 228-237.
W. Qiu, A. Yuille, Unrealcv: Connecting computer vision to unreal engine, in proceedings of European Conference on Computer Vision (2016) (909-916). DOI: https://doi.org/10.1007/978-3-319-49409-8_75
N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox, A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016) 4040-4048. DOI: https://doi.org/10.1109/CVPR.2016.438
P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazırba¸s, V. Golkov, P. van der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with convolutional networks, in Proceedings of the IEEE international conference on computer vision (2015) 2758-2766.
S. R. Richter, V. Vineet, S. Roth, V. Koltun, Playing for data: Ground truth from computer games, in European conference on computer vision (2016) 102–118.
G. Ros, L. Sellart, J. Materzynska, D. Vazquez, A. M. Lopez, The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 3234–3243.
D. J. Butler, J. Wulff, G. B. Stanley, M. J. Black, A naturalistic open source movie for optical flow evaluation, in proceedings of Computer Vision – ECCV (2012) 611–625. DOI: https://doi.org/10.1007/978-3-642-33783-3_44
M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Synthetic data and artificial neural networks for natural scene text recognition, arXiv preprint arXiv:1406.2227 (2014).
X. Peng, B. Sun, K. Ali, K. Saenko. Learning deep object detectors from 3d models, in Proceedings of the IEEE International Conference on Computer Vision (2015) 1278-1286. DOI: https://doi.org/10.1109/ICCV.2015.151
P. S. Rajpura, H. Bojinov, R. S. Hegde, Object detection using deep cnns trained on synthetic images, arXiv preprint arXiv:1706.06782 (2017).
K. Wang, F. Shi, W. Wang, Y. Nan, S. Lian, Synthetic data generation and adaption for object detection in smart vending machines, arXiv preprint arXiv:1904.12294 (2019).
G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, C. Schmid. Learning from synthetic humans, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017) 109–117. DOI: https://doi.org/10.1109/CVPR.2017.492
J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, S. Boochoon, S. Birchfield, Training deep networks with synthetic data: Bridging the reality gap by domain randomization, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018) 969–977. 231 Journal of Computer Sciences Institute 16 (2020) 227–232
C. Mitash, K. E. Bekris, A. Boularias, A self-supervised learning system for object detection using physics simulation and multi-view pose estimation, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) 545-551. DOI: https://doi.org/10.1109/IROS.2017.8202206
J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain randomization for transferring deep neural networks from simulation to the real world, in proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) 23-30. DOI: https://doi.org/10.1109/IROS.2017.8202133
G. Ros, L. Sellart, J. Materzynska, D. Vazquez, A. M. Lopez, The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 3234–3243.
H. Hattori, V. N. Boddeti, K. M. Kitani, T. Kanade, Learning scene-specific pedestrian detectors without real data, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015) 3819–3827. DOI: https://doi.org/10.1109/CVPR.2015.7299006
J. Howard, S. Gugger. fastai: A layered api for deep learning, Information 11(2) (2020) 108.
Article Details
Abstract views: 1074
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
