Analysis and comparison of programming frameworks used for automated tests
Article Sidebar
Open full text
Issue Vol. 17 (2020)
-
Impact of the persistence layer implementation methods on application per-formance
Kamil Siebyła, Maria Skublewska-Paszkowska326-331
-
Analysis of positioning errors of the GPS navigation receivers
Łukasz Budzyński, Eligiusz Pawłowski332-338
-
Analysis and comparison of programming frameworks used for automated tests
Damian Gromek, Dariusz Gutek339-344
-
An Examination of Selected Websites Availability For People With Various Types of Disabilities
Mateusz Proskura, Sylwia Podkościelna, Grzegorz Kozieł345-350
-
Comparative analysis of web application performance testing tools
Agata Kołtun, Beata Pańczyk351-357
-
Performance comparison of relational databases SQL Server, MySQL and PostgreSQL using a web application and the Laravel framework
Rafał Wodyk, Maria Skublewska-Paszkowska358-364
-
Comparative analysis of microcontrollers from the Arduino family and other compatible ones
Przemysław Suszek, Tomasz Szymczyk365-372
-
Oracle 19c, SQL Server 2019, Postgresql 12 and MySQL 8 database systems comparison
Arkadiusz Solarz, Tomasz Szymczyk373-378
-
Comparative analysis of medical images watermarking methods
Sylwia Duda, Dominik Fijałek, Grzegorz Kozieł379-383
-
Performance comparison of web services using Symfony, Spring, and Rails examples
Patryk Lubartowicz, Beata Pańczyk384-389
-
Modeling of COVID-19 cases of selected states in Nigeria using linear and non-linear prediction models
Babatunde Abdulrauph Olarenwaju, Igboeli Uchenna Harrison390-395
-
Comparative analysis of the technology used to create multi-platform applications on the example of NW.js and Electron
Maciej Hołowiński, Beata Pańczyk396-400
-
Faster R-CNN model learning on synthetic images
Błażej Łach, Edyta Łukasik401-404
-
Enviromental data visualisation using Delaunay triangulation
Mateusz Nowosad405-411
-
Comparison of methods and tools for generating levels of details of 3D models for popular game engines
Michał Tomecki412-416
-
Analysis of the use of the UTAUT model for modeling the information technology acceptance process
Magdalena Czerwinska417-420
-
Transport preferences of the students and employers in Lublin University of Technology
Jakub Bis, Magda Kojro421-427
Main Article Content
DOI
Authors
Abstract
This article compares and discusses the programming skeletons for automatic tests. Two test skeletons have been selected for testing purposes and then a test environment has been installed and configured, in which appropriate test scenarios have been prepared. Once the test environment has been properly prepared, measurements of the time to launch both frameworks were performed. The results obtained were shown in the form of tables and charts for later analysis. The frameworks were also analyzed in terms of syntax and functionality. At the end, a summary was presented, containing more information and conclusions that resulted from the analysis.
Keywords:
References
ISTQB: Certified Tester - Foundation Level Sylabus, ISTQB, 2018
ISTQB: Advanced Level – Test Automation Engineer Sylabus. ISTQB, 2016
Zbiór informacji o testowaniu, https://pwicherski.gitbook.io/, [28.06.2020]
Informacje o TestNG, https://testerzy.pl/baza-wiedzy/akcja-automatyzacja-czesc-2-junit-testng-porownanie , [30.06.2020]
Informacje o JUnit, https://en.wikipedia.org/wiki/JUnit, [30.06.2020]
B. Garcia, Mastering Software Testing with JUnit 5: Comprehensive guide to develop high quality Java applications, Packt Publishing Ltd, 2017
Dokumentacja frameworka JUnit, https://junit.org/junit5/docs/current/user-guide/, [10.07.2020]
Składnia frameworków JUnit oraz TestNG, https://www.toolsqa.com/testng/testng-vs-junit/, [28.06.2020]
Popularność JUnit oraz TestNG, https://blog.overops.com/junit-vs-testng-which-testing-framework-should-you-choose/, [10.07.2020]
Article Details
Abstract views: 359
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
