Analysis of selected methods of creating artificial intelligence on the example of a popular card game
Łukasz Gałka
lukasz.galka2@pollub.edu.plLublin University of Technology (Poland)
Mariusz Dzieńkowski
Lublin University of Technology
Abstract
The aim of the article was to analyze selected methods of creating artificial intelligence in a popular card game. Two experiments were conducted: with a human and with a computer. The following algorithms were analyzed: random, min-max, based on a neural network, statistical and statistical with the use of "cheating" technique. The examined parameters were as follows: efficiency, execution time, number of implementation code lines, implementation time and training duration. The indicator with the greatest impact on the selection of the most optimal method was efficiency. The research has shown no difference in efficiency for the neural network-based algorithm and the statistical algorithm. In other cases, the differences in this feature were significant. The use of the "cheating" technique has increased the efficiency.
Keywords:
artificial intelligence; machine learning; algorithm efficiency evaluation; computer gamesReferences
D.S. Cohen, T.J. Park, S.A Bustamante, Producing Games: From Business and Budgets to Creativity and Design, Routledge, 2010.
Google Scholar
T. Walsh, To zyje! Sztuczna inteligencja, Wydawnictwo Naukowe PWN, 2018.
Google Scholar
K. Wołk, Zabawa ze sztuczna inteligencja, Psychoskok, 2018.
Google Scholar
S. Nowaczyk, Frontiers in Artificial Intelligence and Applications, Thirteenth Scandinavian Conference on Artificial Intelligence, Tom 278, Holandia, 2015.
Google Scholar
T. Burczynski, W. Cholewa, W. Moczulski, Methods of artificial intelligence, Silesian University of Technology, 2009.
Google Scholar
S. Castellano, Artificial Intelligence, Genuine Learning, Talent Development, Tom 73, Wydanie 10, 2019.
Google Scholar
J. Łeski, Systemy neuronowo-rozmyte, Wydawnictwo WNT, 2008.
Google Scholar
L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, 2009.
Google Scholar
Z. Shi, Advanced Artificial Intelligence, World Scientific, Singapur, 2011.
DOI: https://doi.org/10.1142/7547
Google Scholar
B. Zohuri, M. Moghaddam, Neural Network Driven Artificial Intelligence: Decision Making Based on Fuzzy Logic. Nova Science Publisher, Nowy Jork, 2017.
Google Scholar
N. Joshi, Hands-On Artificial Intelligence with Java for Beginners: Build Intelligent Apps Using Machine Learning and Deep Learning with Deeplearning4j, Packt Publishing, 2018.
Google Scholar
Przeglad branzy gier wideo, https://www.wepc.com/news/video-game-statistics, [13.07.2020].
Google Scholar
G.N. Yannakakis, J. Togelius, Artificial intelligence and games, Cham: Springer, 2018.
DOI: https://doi.org/10.1007/978-3-319-63519-4
Google Scholar
G.N. Yannakakis, J. Togelius, A Panorama of Artificial and Computational Intelligence in Games, IEEE Transactions on Computational Intelligence and AI in Games, 2015.
DOI: https://doi.org/10.1109/TCIAIG.2014.2339221
Google Scholar
D. Brackeen, Java: tworzenie gier, Wydawnictwo Helion, Gliwice, 2004.
Google Scholar
J.S. Harbour, Beginning Java SE 6 Game Programming, MA: Course PTR, Boston, 2012.
Google Scholar
B. Kaluza, Machine Learning in Java, Packt Publishing, 2016.
Google Scholar
W. McAllister, J. Fritz, Programming Fundamentals Using Java: A Game Application Approach, Dulles, Virginia: Mercury Learning & Information, 2015.
Google Scholar
S. Pieta, M. Scibisz, M. Wisniewski, Podstawy tworzenia interfejsu graficznego aplikacji desktopowych w jezyku Java, Oficyna Wydawnicza Politechniki Warszawskiej, 2019.
Google Scholar
S.K. Aditya, P. Mohanta, V. K. Karn, Android SQLite Essentials, Packt Publishing, 2014.
Google Scholar
R.A. Johnson, Java Database Connectivity Using Sqlite: A Tutorial, Java Database Connectivity Using Sqlite: A Tutorial, Proceedings of the Academy of Information & Management Sciences, 2014.
Google Scholar
B. Rigal, S. Kupisz, Gry karciane, Helion, 2007.
Google Scholar
B. Whiter, J. Kluzinski, Gry karciane, K.E. Liber 2004.
Google Scholar
T.B. Alakus, R. Das, I. Turkoglu, An Overview of Quality Metrics Used in Estimating Software Faults, International Artificial Intelligence and Data Processing Symposium, 2019.
DOI: https://doi.org/10.1109/IDAP.2019.8875925
Google Scholar
L. Buglione, A. Abran, Measurement Process: Improving the ISO 15939 Standard, Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement, 2014.
DOI: https://doi.org/10.1109/IWSM.Mensura.2014.39
Google Scholar
Dokumentacja oprogramowania CLOC, https://github.com/AlDanial/cloc, [13.07.2020].
Google Scholar
Authors
Mariusz DzieńkowskiLublin University of Technology
Statistics
Abstract views: 451PDF downloads: 343
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.