Analysis of selected methods of creating artificial intelligence on the example of a popular card game
Article Sidebar
Open full text
Issue Vol. 16 (2020)
-
Java and Kotlin code performance in selected web frameworks
Grzegorz Bujnowski, Jakub Smołka219-226
-
Blender as a tool for generating synthetic data
Rafał Sieczka, Maciej Pańczyk227-232
-
Analysis of selected methods of creating artificial intelligence on the example of a popular card game
Łukasz Gałka, Mariusz Dzieńkowski233-240
-
Comparative analysis of Kotlin coroutines with Java and Scala in parallel programming
Adrian Zieliński241-246
-
Performance testing of STL and Qt library elements in multi-threaded processing
Piotr Krasowski, Jakub Smołka247-251
-
A security analysis of authentication and authorization implemented in web applications based on the REST architecture
Tomasz Muszyński, Grzegorz Koziel252-260
-
Analysis of security CMS platforms by vulnerability scanners
Patryk Zamościński, Grzegorz Kozieł261-268
-
Analysis of the Blazor framework in client-hosted mode
Karol Kozak, Jakub Smołka269-273
-
Implementation of solutions for distributed team management in IT sector companies
Mykhailo Kuzyk, Elżbieta Miłosz274-278
-
Comparison of MySQL, MSSQL, PostgreSQL, Oracle databases performance, including virtualization
Wojciech Truskowski, Rafał Klewek, Maria Skublewska-Paszkowska279-284
-
Comparative analysis of selected object-relational mapping systems for the .NET platform
Krzysztof Drzazga, Marcin Bobel, Maria Skublewska-Paszkowska285-292
-
Analysis of the use of Java and C# languages for building a mobile application for the Android platform.
Michał Jankowski, Maria Skublewska-Paszkowska293-299
-
Performance comparison of chosen JSON parsers and a parser that employs a different reading method
Przemysław Koter300-304
-
Comparison of Objective-C and Swift on the example of a mobile game
Karolina Banach, Maria Skublewska-Paszkowska305-308
-
Comparison of REST and GraphQL web technology performance
Mateusz Mikuła, Mariusz Dzieńkowski309-316
-
The analysis of air pollution based on laser beam photo
Rafał Maksim, Anna Pawelec, Maria Skublewska-Paszkowska317-325
Main Article Content
DOI
Authors
Abstract
The aim of the article was to analyze selected methods of creating artificial intelligence in a popular card game. Two experiments were conducted: with a human and with a computer. The following algorithms were analyzed: random, min-max, based on a neural network, statistical and statistical with the use of "cheating" technique. The examined parameters were as follows: efficiency, execution time, number of implementation code lines, implementation time and training duration. The indicator with the greatest impact on the selection of the most optimal method was efficiency. The research has shown no difference in efficiency for the neural network-based algorithm and the statistical algorithm. In other cases, the differences in this feature were significant. The use of the "cheating" technique has increased the efficiency.
Keywords:
References
D.S. Cohen, T.J. Park, S.A Bustamante, Producing Games: From Business and Budgets to Creativity and Design, Routledge, 2010.
T. Walsh, To zyje! Sztuczna inteligencja, Wydawnictwo Naukowe PWN, 2018.
K. Wołk, Zabawa ze sztuczna inteligencja, Psychoskok, 2018.
S. Nowaczyk, Frontiers in Artificial Intelligence and Applications, Thirteenth Scandinavian Conference on Artificial Intelligence, Tom 278, Holandia, 2015.
T. Burczynski, W. Cholewa, W. Moczulski, Methods of artificial intelligence, Silesian University of Technology, 2009.
S. Castellano, Artificial Intelligence, Genuine Learning, Talent Development, Tom 73, Wydanie 10, 2019.
J. Łeski, Systemy neuronowo-rozmyte, Wydawnictwo WNT, 2008.
L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, 2009.
Z. Shi, Advanced Artificial Intelligence, World Scientific, Singapur, 2011. DOI: https://doi.org/10.1142/7547
B. Zohuri, M. Moghaddam, Neural Network Driven Artificial Intelligence: Decision Making Based on Fuzzy Logic. Nova Science Publisher, Nowy Jork, 2017.
N. Joshi, Hands-On Artificial Intelligence with Java for Beginners: Build Intelligent Apps Using Machine Learning and Deep Learning with Deeplearning4j, Packt Publishing, 2018.
Przeglad branzy gier wideo, https://www.wepc.com/news/video-game-statistics, [13.07.2020].
G.N. Yannakakis, J. Togelius, Artificial intelligence and games, Cham: Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-63519-4
G.N. Yannakakis, J. Togelius, A Panorama of Artificial and Computational Intelligence in Games, IEEE Transactions on Computational Intelligence and AI in Games, 2015. DOI: https://doi.org/10.1109/TCIAIG.2014.2339221
D. Brackeen, Java: tworzenie gier, Wydawnictwo Helion, Gliwice, 2004.
J.S. Harbour, Beginning Java SE 6 Game Programming, MA: Course PTR, Boston, 2012.
B. Kaluza, Machine Learning in Java, Packt Publishing, 2016.
W. McAllister, J. Fritz, Programming Fundamentals Using Java: A Game Application Approach, Dulles, Virginia: Mercury Learning & Information, 2015.
S. Pieta, M. Scibisz, M. Wisniewski, Podstawy tworzenia interfejsu graficznego aplikacji desktopowych w jezyku Java, Oficyna Wydawnicza Politechniki Warszawskiej, 2019.
S.K. Aditya, P. Mohanta, V. K. Karn, Android SQLite Essentials, Packt Publishing, 2014.
R.A. Johnson, Java Database Connectivity Using Sqlite: A Tutorial, Java Database Connectivity Using Sqlite: A Tutorial, Proceedings of the Academy of Information & Management Sciences, 2014.
B. Rigal, S. Kupisz, Gry karciane, Helion, 2007.
B. Whiter, J. Kluzinski, Gry karciane, K.E. Liber 2004.
T.B. Alakus, R. Das, I. Turkoglu, An Overview of Quality Metrics Used in Estimating Software Faults, International Artificial Intelligence and Data Processing Symposium, 2019. DOI: https://doi.org/10.1109/IDAP.2019.8875925
L. Buglione, A. Abran, Measurement Process: Improving the ISO 15939 Standard, Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement, 2014. DOI: https://doi.org/10.1109/IWSM.Mensura.2014.39
Dokumentacja oprogramowania CLOC, https://github.com/AlDanial/cloc, [13.07.2020].
Article Details
Abstract views: 590
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
