Faster R-CNN model learning on synthetic images
Article Sidebar
Open full text
Issue Vol. 17 (2020)
-
Impact of the persistence layer implementation methods on application per-formance
Kamil Siebyła, Maria Skublewska-Paszkowska326-331
-
Analysis of positioning errors of the GPS navigation receivers
Łukasz Budzyński, Eligiusz Pawłowski332-338
-
Analysis and comparison of programming frameworks used for automated tests
Damian Gromek, Dariusz Gutek339-344
-
An Examination of Selected Websites Availability For People With Various Types of Disabilities
Mateusz Proskura, Sylwia Podkościelna, Grzegorz Kozieł345-350
-
Comparative analysis of web application performance testing tools
Agata Kołtun, Beata Pańczyk351-357
-
Performance comparison of relational databases SQL Server, MySQL and PostgreSQL using a web application and the Laravel framework
Rafał Wodyk, Maria Skublewska-Paszkowska358-364
-
Comparative analysis of microcontrollers from the Arduino family and other compatible ones
Przemysław Suszek, Tomasz Szymczyk365-372
-
Oracle 19c, SQL Server 2019, Postgresql 12 and MySQL 8 database systems comparison
Arkadiusz Solarz, Tomasz Szymczyk373-378
-
Comparative analysis of medical images watermarking methods
Sylwia Duda, Dominik Fijałek, Grzegorz Kozieł379-383
-
Performance comparison of web services using Symfony, Spring, and Rails examples
Patryk Lubartowicz, Beata Pańczyk384-389
-
Modeling of COVID-19 cases of selected states in Nigeria using linear and non-linear prediction models
Babatunde Abdulrauph Olarenwaju, Igboeli Uchenna Harrison390-395
-
Comparative analysis of the technology used to create multi-platform applications on the example of NW.js and Electron
Maciej Hołowiński, Beata Pańczyk396-400
-
Faster R-CNN model learning on synthetic images
Błażej Łach, Edyta Łukasik401-404
-
Enviromental data visualisation using Delaunay triangulation
Mateusz Nowosad405-411
-
Comparison of methods and tools for generating levels of details of 3D models for popular game engines
Michał Tomecki412-416
-
Analysis of the use of the UTAUT model for modeling the information technology acceptance process
Magdalena Czerwinska417-420
-
Transport preferences of the students and employers in Lublin University of Technology
Jakub Bis, Magda Kojro421-427
Main Article Content
DOI
Authors
Abstract
Machine learning requires a human description of the data. The manual dataset description is very time consuming. In this article was examined how the model learns from artificially created images, with the least human participation in describing the data. It was checked how the model learned on artificially produced images with augmentations and progressive image size. The model has achieve up to 3.35 higher mean average precision on syntetic dataset in the training with increasing images resolution. Augmentations improved the quality of detection on real photos. The production of artificially generated training data has a great impact on the acceleration of prepare training, because it does not require as much human resources as normal learning process.
Keywords:
References
S. Ren et al.: Faster R-CNN: Towards Real-Time Ob-ject Detection with Region Proposal Networks, IEEETransactions on Pattern Analysis and Machine Intel-ligence, t. 39, nr 6, s. 1137–1149, cze. 2017, https://doi.org/10.1109/TPAMI.2016.2577031. DOI: https://doi.org/10.1109/TPAMI.2016.2577031
R. Girshick: Fast R-CNN, [W:] 2015 IEEE InternationalConference on Computer Vision (ICCV), 2015, https://doi.org/10.1109/ICCV.2015.169. DOI: https://doi.org/10.1109/ICCV.2015.169
H. Jiang, E. Learned-Miller: Face Detection with theFaster R-CNN, [W:] 2017 12th IEEE International Con-ference on Automatic Face & Gesture Recognition (FG2017), 2017, https://doi.org/10.1109/FG.2017.82. DOI: https://doi.org/10.1109/FG.2017.82
B. Zoph et al.: Learning Data Augmentation Strate-gies for Object Detection, 2019, https://arxiv.org/pdf/1906.11172.pdf.
E. Cubuk et al.: AutoAugment: Learning AugmentationStrategies from Data, [W:] 2019 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition (CVPR),2019, https://doi.org/10.1109/CVPR.2019.00020. DOI: https://doi.org/10.1109/CVPR.2019.00020
H. Clever et al.: Bodies at Rest: 3D Human Pose andShape Estimation from a Pressure Image using Synthet-ic Data, [W:] 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition (CVPR), 2020,https://doi.org/10.1109/CVPR42600.2020.00625. DOI: https://doi.org/10.1109/CVPR42600.2020.00625
M. Danielczuk et al.: Segmenting Unknown 3D Objectsfrom Real Depth Images using Mask R-CNN Trained onSynthetic Data, [W:] 2019 International Conference onRobotics and Automation (ICRA), 2019, https://doi.org/10.1109/ICRA.2019.8793744. DOI: https://doi.org/10.1109/ICRA.2019.8793744
A. Pashevich et al.:Learning to Augment Syn-thetic Images for Sim2Real Policy Transfer, [W:]2019 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS), 2019, https://doi.org/10.1109/IROS40897.2019.8967622. DOI: https://doi.org/10.1109/IROS40897.2019.8967622
M. Abadi et al.:TensorFlow: Large-Scale MachineLearning on Heterogeneous Distributed Systems, 2016, https://arxiv.org/pdf/1603.04467.pdf.
A. Buslaev et al.: Albumentations: fast and flexibleimage augmentations, Information, t. 11, nr 2, s. 125, luty 2020, https://doi.org/10.3390/info11020125.4
Article Details
Abstract views: 474
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
