Faster R-CNN model learning on synthetic images

Błażej Łach

blazej.lach@pollub.edu.pl
Politechnika Lubelska (Poland)

Edyta Łukasik


Lublin University of Technology (Poland)

Abstract

Machine learning requires a human description of the data. The manual dataset description is very time consuming. In this article was examined how the model learns from artificially created images, with the least human participation in describing the data. It was checked how the model learned on artificially produced images with augmentations and progressive image size. The model has achieve up to 3.35 higher mean average precision on syntetic dataset in the training with increasing images resolution. Augmentations improved the quality of detection on real photos. The production of artificially generated training data has a great impact on the acceleration of prepare training, because it does not require as much human resources as normal learning process.


Keywords:

computer vision, synthetic images, Faster R-CNN, deep learning

S. Ren et al.: Faster R-CNN: Towards Real-Time Ob-ject Detection with Region Proposal Networks, IEEETransactions on Pattern Analysis and Machine Intel-ligence, t. 39, nr 6, s. 1137–1149, cze. 2017, https://doi.org/10.1109/TPAMI.2016.2577031.
DOI: https://doi.org/10.1109/TPAMI.2016.2577031   Google Scholar

R. Girshick: Fast R-CNN, [W:] 2015 IEEE InternationalConference on Computer Vision (ICCV), 2015, https://doi.org/10.1109/ICCV.2015.169.
DOI: https://doi.org/10.1109/ICCV.2015.169   Google Scholar

H. Jiang, E. Learned-Miller: Face Detection with theFaster R-CNN, [W:] 2017 12th IEEE International Con-ference on Automatic Face & Gesture Recognition (FG2017), 2017, https://doi.org/10.1109/FG.2017.82.
DOI: https://doi.org/10.1109/FG.2017.82   Google Scholar

B. Zoph et al.: Learning Data Augmentation Strate-gies for Object Detection, 2019, https://arxiv.org/pdf/1906.11172.pdf.
  Google Scholar

E. Cubuk et al.: AutoAugment: Learning AugmentationStrategies from Data, [W:] 2019 IEEE/CVF Conferenceon Computer Vision and Pattern Recognition (CVPR),2019, https://doi.org/10.1109/CVPR.2019.00020.
DOI: https://doi.org/10.1109/CVPR.2019.00020   Google Scholar

H. Clever et al.: Bodies at Rest: 3D Human Pose andShape Estimation from a Pressure Image using Synthet-ic Data, [W:] 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition (CVPR), 2020,https://doi.org/10.1109/CVPR42600.2020.00625.
DOI: https://doi.org/10.1109/CVPR42600.2020.00625   Google Scholar

M. Danielczuk et al.: Segmenting Unknown 3D Objectsfrom Real Depth Images using Mask R-CNN Trained onSynthetic Data, [W:] 2019 International Conference onRobotics and Automation (ICRA), 2019, https://doi.org/10.1109/ICRA.2019.8793744.
DOI: https://doi.org/10.1109/ICRA.2019.8793744   Google Scholar

A. Pashevich et al.:Learning to Augment Syn-thetic Images for Sim2Real Policy Transfer, [W:]2019 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS), 2019, https://doi.org/10.1109/IROS40897.2019.8967622.
DOI: https://doi.org/10.1109/IROS40897.2019.8967622   Google Scholar

M. Abadi et al.:TensorFlow: Large-Scale MachineLearning on Heterogeneous Distributed Systems, 2016, https://arxiv.org/pdf/1603.04467.pdf.
  Google Scholar

A. Buslaev et al.: Albumentations: fast and flexibleimage augmentations, Information, t. 11, nr 2, s. 125, luty 2020, https://doi.org/10.3390/info11020125.4
  Google Scholar

Download


Published
2020-12-30

Cited by

Łach, B., & Łukasik, E. (2020). Faster R-CNN model learning on synthetic images. Journal of Computer Sciences Institute, 17, 401–404. https://doi.org/10.35784/jcsi.2285

Authors

Błażej Łach 
blazej.lach@pollub.edu.pl
Politechnika Lubelska Poland

Authors

Edyta Łukasik 

Lublin University of Technology Poland

Statistics

Abstract views: 326
PDF downloads: 249