Comparative analysis of medical images watermarking methods
Article Sidebar
Open full text
Issue Vol. 17 (2020)
-
Impact of the persistence layer implementation methods on application per-formance
Kamil Siebyła, Maria Skublewska-Paszkowska326-331
-
Analysis of positioning errors of the GPS navigation receivers
Łukasz Budzyński, Eligiusz Pawłowski332-338
-
Analysis and comparison of programming frameworks used for automated tests
Damian Gromek, Dariusz Gutek339-344
-
An Examination of Selected Websites Availability For People With Various Types of Disabilities
Mateusz Proskura, Sylwia Podkościelna, Grzegorz Kozieł345-350
-
Comparative analysis of web application performance testing tools
Agata Kołtun, Beata Pańczyk351-357
-
Performance comparison of relational databases SQL Server, MySQL and PostgreSQL using a web application and the Laravel framework
Rafał Wodyk, Maria Skublewska-Paszkowska358-364
-
Comparative analysis of microcontrollers from the Arduino family and other compatible ones
Przemysław Suszek, Tomasz Szymczyk365-372
-
Oracle 19c, SQL Server 2019, Postgresql 12 and MySQL 8 database systems comparison
Arkadiusz Solarz, Tomasz Szymczyk373-378
-
Comparative analysis of medical images watermarking methods
Sylwia Duda, Dominik Fijałek, Grzegorz Kozieł379-383
-
Performance comparison of web services using Symfony, Spring, and Rails examples
Patryk Lubartowicz, Beata Pańczyk384-389
-
Modeling of COVID-19 cases of selected states in Nigeria using linear and non-linear prediction models
Babatunde Abdulrauph Olarenwaju, Igboeli Uchenna Harrison390-395
-
Comparative analysis of the technology used to create multi-platform applications on the example of NW.js and Electron
Maciej Hołowiński, Beata Pańczyk396-400
-
Faster R-CNN model learning on synthetic images
Błażej Łach, Edyta Łukasik401-404
-
Enviromental data visualisation using Delaunay triangulation
Mateusz Nowosad405-411
-
Comparison of methods and tools for generating levels of details of 3D models for popular game engines
Michał Tomecki412-416
-
Analysis of the use of the UTAUT model for modeling the information technology acceptance process
Magdalena Czerwinska417-420
-
Transport preferences of the students and employers in Lublin University of Technology
Jakub Bis, Magda Kojro421-427
Main Article Content
DOI
Authors
Abstract
The article is devoted to the analysis of watermarking algorithms in terms of their use in marking medical images. The algorithms based on the Integer Wavelet Transform (IWT), Discrete Cosine Transform (DCT), and Singular Value Decomposition (SVD) were compared. The algorithms were implemented using the combinations: IWT, IWT-DCT, and IWT-SVD. As part of the research, the level of disturbances caused by embedding the watermark was checked using subjective and objective methods. The attack resistance of the watermarked images was tested and the steganographic capacity was measured. All algorithms are based on IWT, however, each has different advantages. The algorithm based on the IWT showed the highest capacity. The most resistant to attacks is IWT-SVD, and the lowest level of interference was obtained for the IWT-DCT algorithm.
Keywords:
References
G. Kozieł, Zmodyfikowane metody cyfrowego przetwarzania sygnałów dźwiękowych w steganografii komputerowej, Politechnika Lubelska, Lublin 2010.
D. Bogumił, Cyfrowe znaki wodne odporne na kompresję JPEG, Politechnika Warszawska, Instytut Informatyki, wrzesień 2001.
Różnice między steganografią a znakowaniem wodnym, https://absta.pl/zakad-ochrony-informacji.html?page=8, [02.10.2020].
G. Xuan, J. Chen, J. Zhu, Y.Q. Shi, Z. Ni, W. Su, Lossless data hiding based on integer wavelet transform, 10.1109/MMSP.2002.1203308 (2003) 312-315.
A.R. Alotaibi, A.L. Elrefaei: Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT), Applied Computing and Informatics, 2019. DOI: https://doi.org/10.1016/j.aci.2018.06.003
P. Gupta, G. Parmar, Image watermarking using IWT-SVD and its comparative analysis with DWT-SVD, 10.1109/COMPTELIX.2017.8004026 (2017) 527-561.
A. Horé, D. Ziou, Image quality metrics: PSNR vs. SSIM. 10.1109/ICPR.2010.579 (2010) 2366-2369.
Article Details
Abstract views: 344
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
