Comparative analysis of the methods of watermarking X-ray images
Article Sidebar
Open full text
Issue Vol. 20 (2021)
-
Tools for analysis of business processes – a comparative analysis
Jakub Janicki, Ernest Wójcik165-169
-
Comparative analysis of UIKit and SwiftUI frameworks in iOS system
Piotr Wiertel, Maria Skublewska-Paszkowska170-174
-
Comparison of selected view creation technologies in applications using the Laravel framework
Albert Woś, Beata Pańczyk175-182
-
Comparison of web application state management tools
Kacper Szymanek, Beata Pańczyk183-188
-
Comparative analysis of the methods of watermarking X-ray images
Weronika Kulbaka, Paulina Paluch, Grzegorz Kozieł189-196
-
Analysis of the possibilities for using machine learning algorithms in the Unity environment
Karina Litwynenko, Małgorzata Plechawska-Wójcik197-204
-
Comparative analysis of the Angular 10 and Vue 3.0 frameworks
Piotr Lipski, Jarosław Kyć, Beata Pańczyk205-209
-
Immersion analysis during gameplay in VR and on a PC
Karol Moniuszko, Tomasz Szymczyk210-216
-
Comparative analysis of the proprietary navigation system and the built-in Unity engine tool
Maciej Kempny, Marcin Barszcz217-224
-
Comparison of the compilation speed of the SCSS and LESS preprocessors
Andrii Berkovskyy, Kostiantyn Voskoboinik, Marcin Badurowicz225-229
-
Performance analysis of machine learning libraries
Ewa Justyna Kędziora, Grzegorz Krzysztof Maksim230-236
-
Graphics display capabilities in web browsers
Damian Sołtysiuk, Maria Skublewska-Paszkowska237-242
-
Comparative analysis of online stores
Arkadiusz Wójtowicz, Marek Miłosz243-246
-
Comparative analysis of Unity and Unreal Engine efficiency in creating virtual exhibitions of 3D scanned models
Agata Ciekanowska, Adam Kiszczak - Gliński, Krzysztof Dziedzic247-253
-
IoT system for remote monitoring of mangrove forest the Sundarbans
Asif Rahman Rumee254-258
Main Article Content
DOI
Authors
weronika.kulbaka@pollub.edu.pl
Abstract
This paper is devoted to the comparative analysis of watermarking algorithms for X-ray images. The techniques based on discrete wavelet transform (DWT), singular value decomposition (SVD) and DWT-SVD hybrid were compared. Transparency, resistance to graphical transformations, and performance were investigated. The watermarked images were visually evaluated and quality tested. SVD showed the highest resistance to attacks, and the embedded watermarked images were of better quality in the comparison to the other algorithms. The DWT technique was the fastest, but not resistant to graphical transformations. In DWT-SVD labeled images, the watermark is indistinguishable, but the resistance to attacks is low. The SVD was found to be the most suitable method for watermarking of X-ray images.
Keywords:
References
A. Anand, A. K. Singh, An improved DWT-SVD domain watermarking for medical information security. Computer Communications, 152 (2020) 72-80. DOI: https://doi.org/10.1016/j.comcom.2020.01.038
A. Anand, A. K. Singh, Watermarking techniques for medical data authentication: a survey. Multimedia Tools and Applications 313 (2020) 1-33.
S. M. Arora, A DWT-SVD based robust digital watermarking for digital images. Procedia computer science, 132 (2018) 1441-1448. DOI: https://doi.org/10.1016/j.procs.2018.05.076
M. Begum, M. S. Uddin, Digital Image Watermarking Techniques: A Review. Information, 11(2) (2020) 110. DOI: https://doi.org/10.3390/info11020110
B. V. Bhalerao, R. R. Manza, Y. M. Rajput, Use of quality measures for rural indian fingerprint image database enhancement and improve the recognition rate. International Journal of Computer Applications, 70(18) (2013) 13-15. DOI: https://doi.org/10.5120/12166-8124
P. Garg, R. R. Kishore, Performance comparison of various watermarking techniques. Multimedia Tools and Applications, 79(35) (2020) 25921-25967. DOI: https://doi.org/10.1007/s11042-020-09262-1
Internetowa baza zdjęć medycznych: https://medpix.nlm.nih.gov/home, [22.03.2021r.]
Internetowa społeczność naukowców i praktyków uczenia maszynowego: https://www.kaggle.com, [22.03.2021r.]
F. Kahlessenane, A. Khaldi, R. Kafi,, S. Euschi, A DWT based watermarking approach for medical image protection. Journal of Ambient Intelligence and Humanized Computing, 12(4) (2020) 1-8. DOI: https://doi.org/10.1007/s12652-020-02450-9
Y. H. Liu, K. F. Yang, H. M. Yan, No-Reference Image Quality Assessment Method Based on Visual Parameters. Journal of Electronic Science and Technology, 17(2) (2019) 171-184.
A. Ray, S. Roy, Recent trends in image watermarking techniques for copyright protection: a survey. International Journal of Multimedia Information Retrieval, 9(4) (2020) 1-22. DOI: https://doi.org/10.1007/s13735-020-00197-9
U. Sara, M. Akter, M. S. Uddin, Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 7(3) (2019) 8-18. DOI: https://doi.org/10.4236/jcc.2019.73002
A. Shehab, M. Elhoseny, K. Muhammad, A. K. Sangaiah, P. Yang, H. Huang, G. Hou, Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6 (2018) 10269-10278. DOI: https://doi.org/10.1109/ACCESS.2018.2799240
R. Mironov, S. Kushlev, Medical Images Watermarking using Wavelet Transform and DCT. In LIII International Scientific Conference on Information, Communication and Energy Systems and Technologies, Sozopol , 2018.
M. S. El_Tokhy, Development of optimum watermarking algorithm for radiography images. Computers & Electrical Engineering, 89 (2021) 106932. DOI: https://doi.org/10.1016/j.compeleceng.2020.106932
H. Lala, Digital image watermarking using discrete wavelet transform. International Research Journal of Engineering and Technology, 4(1) (2017) 1682-1685.
Article Details
Abstract views: 386
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
