Analysis of the possibilities for using machine learning algorithms in the Unity environment
Article Sidebar
Open full text
Issue Vol. 20 (2021)
-
Tools for analysis of business processes – a comparative analysis
Jakub Janicki, Ernest Wójcik165-169
-
Comparative analysis of UIKit and SwiftUI frameworks in iOS system
Piotr Wiertel, Maria Skublewska-Paszkowska170-174
-
Comparison of selected view creation technologies in applications using the Laravel framework
Albert Woś, Beata Pańczyk175-182
-
Comparison of web application state management tools
Kacper Szymanek, Beata Pańczyk183-188
-
Comparative analysis of the methods of watermarking X-ray images
Weronika Kulbaka, Paulina Paluch, Grzegorz Kozieł189-196
-
Analysis of the possibilities for using machine learning algorithms in the Unity environment
Karina Litwynenko, Małgorzata Plechawska-Wójcik197-204
-
Comparative analysis of the Angular 10 and Vue 3.0 frameworks
Piotr Lipski, Jarosław Kyć, Beata Pańczyk205-209
-
Immersion analysis during gameplay in VR and on a PC
Karol Moniuszko, Tomasz Szymczyk210-216
-
Comparative analysis of the proprietary navigation system and the built-in Unity engine tool
Maciej Kempny, Marcin Barszcz217-224
-
Comparison of the compilation speed of the SCSS and LESS preprocessors
Andrii Berkovskyy, Kostiantyn Voskoboinik, Marcin Badurowicz225-229
-
Performance analysis of machine learning libraries
Ewa Justyna Kędziora, Grzegorz Krzysztof Maksim230-236
-
Graphics display capabilities in web browsers
Damian Sołtysiuk, Maria Skublewska-Paszkowska237-242
-
Comparative analysis of online stores
Arkadiusz Wójtowicz, Marek Miłosz243-246
-
Comparative analysis of Unity and Unreal Engine efficiency in creating virtual exhibitions of 3D scanned models
Agata Ciekanowska, Adam Kiszczak - Gliński, Krzysztof Dziedzic247-253
-
IoT system for remote monitoring of mangrove forest the Sundarbans
Asif Rahman Rumee254-258
Main Article Content
DOI
Authors
karina.litwynenko@pollub.edu.pl
Abstract
Reinforcement learning algorithms are gaining popularity, and their advancement is made possible by the presence of tools to evaluate them. This paper concerns the applicability of machine learning algorithms on the Unity platform using the Unity ML-Agents Toolkit library. The purpose of the study was to compare two algorithms: Proximal Policy Optimization and Soft Actor-Critic. The possibility of improving the learning results by combining these algorithms with Generative Adversarial Imitation Learning was also verified. The results of the study showed that the PPO algorithm can perform better in uncomplicated environments with non-immediate rewards, while the additional use of GAIL can improve learning performance.
Keywords:
References
A. Juliani, V. P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, Unity: A general platform for intelligent agents, arXiv preprint arXiv:1809.02627v2 (2020).
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).
T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actorcritic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research, 80 (2018) 1861–1870.
J. Ho, S. Ermon, Generative adversarial imitation learning. Advances in neural information processing systems, (2016) 4565–4573.
A. Hussein, M. M. Gaber, E. Elyan, C. Jayne, Imitation Learning: A Survey of Learning Methods. ACM Computing Surveys (CSUR), 50(2) (2017) 1–35 https://doi.org/10.1145/3054912. DOI: https://doi.org/10.1145/3054912
R. S Sutton, A. G. Barto, Reinforcement Learning: An Introduction. Second edition. The MIT Press (2018).
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization. In International conference on machine learning (2015) 1889–1897.
M. Urmanov, M. Alimanova, A. Nurkey, Training Unity Machine Learning Agents using reinforcement learning method. In 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), (2019) 1–4, https://doi.org/10.1109/ICECCO48375.2019.9043194. DOI: https://doi.org/10.1109/ICECCO48375.2019.9043194
M. Pleines, F. Zimmer, V. Berges, Action Spaces in Deep Reinforcement Learning to Mimic Human Input Devices, 2019 IEEE Conference on Games (CoG), (2019) 1–8 https://dx.doi.org/10.1109/CIG.2019.8848080. DOI: https://doi.org/10.1109/CIG.2019.8848080
V. Mnih, K. Kavukcuoglu, D. Silver et al., Human-level control through deep reinforcement learning. Nature, 518(7540) (2015) 529–533. DOI: https://doi.org/10.1038/nature14236
M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47 (2013) 253–279. DOI: https://doi.org/10.1613/jair.3912
A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, C. Blundell, Agent57: Outperforming the Atari Human Benchmark, International Conference on Machine Learning (2020) 507–517.
A. Defazio, T. Graepel, A comparison of learning algorithms on the arcade learning environment. arXiv preprint arXiv:1410.8620 (2014).
G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,W. Zaremba, OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016).
A. Tavakoli, F. Pardo, P. Kormushev, Action branching architectures for deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. No. 1. (2018). DOI: https://doi.org/10.1609/aaai.v32i1.11798
Dokumentacja biblioteki ML-Agents Toolkit — opis i zalecany zakres wartości hiperparametrów uczenia, https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md, [04.05.2021].
Article Details
Abstract views: 623
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
