A. Juliani, V. P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, Unity: A general platform for intelligent agents, arXiv preprint arXiv:1809.02627v2 (2020).
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).
T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actorcritic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research, 80 (2018) 1861–1870.
J. Ho, S. Ermon, Generative adversarial imitation learning. Advances in neural information processing systems, (2016) 4565–4573.
A. Hussein, M. M. Gaber, E. Elyan, C. Jayne, Imitation Learning: A Survey of Learning Methods. ACM Computing Surveys (CSUR), 50(2) (2017) 1–35 https://doi.org/10.1145/3054912.
DOI: https://doi.org/10.1145/3054912
R. S Sutton, A. G. Barto, Reinforcement Learning: An Introduction. Second edition. The MIT Press (2018).
J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization. In International conference on machine learning (2015) 1889–1897.
M. Urmanov, M. Alimanova, A. Nurkey, Training Unity Machine Learning Agents using reinforcement learning method. In 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), (2019) 1–4, https://doi.org/10.1109/ICECCO48375.2019.9043194.
DOI: https://doi.org/10.1109/ICECCO48375.2019.9043194
M. Pleines, F. Zimmer, V. Berges, Action Spaces in Deep Reinforcement Learning to Mimic Human Input Devices, 2019 IEEE Conference on Games (CoG), (2019) 1–8 https://dx.doi.org/10.1109/CIG.2019.8848080.
DOI: https://doi.org/10.1109/CIG.2019.8848080
V. Mnih, K. Kavukcuoglu, D. Silver et al., Human-level control through deep reinforcement learning. Nature, 518(7540) (2015) 529–533.
DOI: https://doi.org/10.1038/nature14236
M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47 (2013) 253–279.
DOI: https://doi.org/10.1613/jair.3912
A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, C. Blundell, Agent57: Outperforming the Atari Human Benchmark, International Conference on Machine Learning (2020) 507–517.
A. Defazio, T. Graepel, A comparison of learning algorithms on the arcade learning environment. arXiv preprint arXiv:1410.8620 (2014).
G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,W. Zaremba, OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016).
A. Tavakoli, F. Pardo, P. Kormushev, Action branching architectures for deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. No. 1. (2018).
DOI: https://doi.org/10.1609/aaai.v32i1.11798
Dokumentacja biblioteki ML-Agents Toolkit — opis i zalecany zakres wartości hiperparametrów uczenia, https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md, [04.05.2021].