Performance analysis of machine learning libraries
Article Sidebar
Open full text
Issue Vol. 20 (2021)
-
Tools for analysis of business processes – a comparative analysis
Jakub Janicki, Ernest Wójcik165-169
-
Comparative analysis of UIKit and SwiftUI frameworks in iOS system
Piotr Wiertel, Maria Skublewska-Paszkowska170-174
-
Comparison of selected view creation technologies in applications using the Laravel framework
Albert Woś, Beata Pańczyk175-182
-
Comparison of web application state management tools
Kacper Szymanek, Beata Pańczyk183-188
-
Comparative analysis of the methods of watermarking X-ray images
Weronika Kulbaka, Paulina Paluch, Grzegorz Kozieł189-196
-
Analysis of the possibilities for using machine learning algorithms in the Unity environment
Karina Litwynenko, Małgorzata Plechawska-Wójcik197-204
-
Comparative analysis of the Angular 10 and Vue 3.0 frameworks
Piotr Lipski, Jarosław Kyć, Beata Pańczyk205-209
-
Immersion analysis during gameplay in VR and on a PC
Karol Moniuszko, Tomasz Szymczyk210-216
-
Comparative analysis of the proprietary navigation system and the built-in Unity engine tool
Maciej Kempny, Marcin Barszcz217-224
-
Comparison of the compilation speed of the SCSS and LESS preprocessors
Andrii Berkovskyy, Kostiantyn Voskoboinik, Marcin Badurowicz225-229
-
Performance analysis of machine learning libraries
Ewa Justyna Kędziora, Grzegorz Krzysztof Maksim230-236
-
Graphics display capabilities in web browsers
Damian Sołtysiuk, Maria Skublewska-Paszkowska237-242
-
Comparative analysis of online stores
Arkadiusz Wójtowicz, Marek Miłosz243-246
-
Comparative analysis of Unity and Unreal Engine efficiency in creating virtual exhibitions of 3D scanned models
Agata Ciekanowska, Adam Kiszczak - Gliński, Krzysztof Dziedzic247-253
-
IoT system for remote monitoring of mangrove forest the Sundarbans
Asif Rahman Rumee254-258
Main Article Content
DOI
Authors
Abstract
The paper presents results of performance analysis of machine learning libraries. The research was based on ML.NET and TensorFlow tools. The analysis was based on a comparison of running time of the libraries, during detection of objects on sets of images, using hardware with different parameters. The library, consuming fewer hardware resources, turned out to be TensorFlow. The choice of hardware platform and the possibility of using graphic cores, affecting the increase in computational efficiency, turned out to be not without significance.
Keywords:
References
Leading business in the age of AI, https://news.microsoft.com/europe/features/leaders-look-to-embrace-ai-and-high-growth-companies-are-seeing-the-benefits, [29.11.2020].
Przewodnik po strukturze ML.NET, https://docs.microsoft.com/pl-pl/dotnet/machine-learning/how-does-mldotnet-work, [30.11.2020].
M. N. Gevorkyan, A. V. Demidova, T. S. Demidova, A. Sobolev, Review and comparative analysis of machine learning libraries for machine learning, Discrete And Continuous Models And Applied Computational Science 27 (2019) 305-315, http://dx.doi.org/10.22363/2658-4670-2019-27-4-305-315. DOI: https://doi.org/10.22363/2658-4670-2019-27-4-305-315
A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly, 2019.
E. Brill, M. Banko, Scaling to very large corpora for natural language disambiguation, Proceedings of 39th Annual Meeting on Association for Computational Linguistics (2001) 26-33, https://doi.org/10.3115/1073012.1073017. DOI: https://doi.org/10.3115/1073012.1073017
V. Shankar, R. Roelofs, H. Mania, A. Fang, B. Recht, L. Schmidt, Evaluating Machine Accuracy on ImageNet, 37th International Conference on Machine Learning (2020) 8634-8644.
E. Zuccarelli, Using machine learning to predict car accidents, https://towardsdatascience.com/using-machine-learning-to-predict-car-accidents-44664c79c942, [15.06.2021].
M. Hartley, T. S. G. Olsson, dtoolAI: Reproducibility for Deep Learning, Patterns 1(5) (2020) 100099, https://doi.org/10.1016/j.patter.2020.100073. DOI: https://doi.org/10.1016/j.patter.2020.100073
C. Deng, X. Ji, C. Rainey, J. Zhang, W. Lu, Integrating Machine Learning with Human Knowledge, iScience 23(11) (2020) 101656, https://doi.org/10.1016/j.isci.2020.101656. DOI: https://doi.org/10.1016/j.isci.2020.101656
Optimize TensorFlow performance using the Profiler, https://www.tensorflow.org/guide/profiler, [15.06.2021].
G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á. García, I. Heredia, P. Malík, L. Hluchý, Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey, Artificial Intelligence Review 52 (2019) 77-124, https://doi.org/10.1007/s10462-018-09679-z. DOI: https://doi.org/10.1007/s10462-018-09679-z
F. Florencio, E. D. M. Ordonez, T. V. Silva, M. C. Júnior, Performance Analysis of Deep Learning Libraries: TensorFlow and PyTorch, Journal of Computer Science 15 (2019) 785-799, http://dx.doi.org/10.3844/jcssp.2019.785.799. DOI: https://doi.org/10.3844/jcssp.2019.785.799
Z. Ahmed, S. Amizadeh, M. Bilenko, R. Carr, W.-S. Chin, Y. Dekel, X. Dupre, V. Eksarevskiy, E. Erhardt, C. Eseanu, S. Filipi, T. Finley, A. Goswami, M. Hoover, S. Inglis, M. Interlandi, S. Katzenber, Machine Learning at Microsoft with ML.NET, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019) 2448-2458, https://doi.org/10.1145/3292500.3330667. DOI: https://doi.org/10.1145/3292500.3330667
T. Jin, G.-T. Bercea, T. D. Le, T. Chen, G. Su, H. Imai, Y. Negishi, A. Leu, K. O'Brien, K. Kawachiya, A. E. Eichenberger, Compiling ONNX Neural Network Models Using MLIR (2020), https://arxiv.org/abs/2008.08272.
J. Redmon, YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolov2, [10.06.2021].
J. Redmon, A. Farhadi, YOLO9000:Better, Faster, Stronger (2016), https://arxiv.org/abs/1612.08242. DOI: https://doi.org/10.1109/CVPR.2017.690
W. Fang, L. Wang, P. Ren, Tinier-YOLO: A Real-Time Object Detection, IEEE Access 8 (2019) 1935-1944, https://doi.org/10.1109/ACCESS.2019.2961959. DOI: https://doi.org/10.1109/ACCESS.2019.2961959
Article Details
Abstract views: 369
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
