IoT system for remote monitoring of mangrove forest the Sundarbans
Article Sidebar
Open full text
Issue Vol. 20 (2021)
-
Tools for analysis of business processes – a comparative analysis
Jakub Janicki, Ernest Wójcik165-169
-
Comparative analysis of UIKit and SwiftUI frameworks in iOS system
Piotr Wiertel, Maria Skublewska-Paszkowska170-174
-
Comparison of selected view creation technologies in applications using the Laravel framework
Albert Woś, Beata Pańczyk175-182
-
Comparison of web application state management tools
Kacper Szymanek, Beata Pańczyk183-188
-
Comparative analysis of the methods of watermarking X-ray images
Weronika Kulbaka, Paulina Paluch, Grzegorz Kozieł189-196
-
Analysis of the possibilities for using machine learning algorithms in the Unity environment
Karina Litwynenko, Małgorzata Plechawska-Wójcik197-204
-
Comparative analysis of the Angular 10 and Vue 3.0 frameworks
Piotr Lipski, Jarosław Kyć, Beata Pańczyk205-209
-
Immersion analysis during gameplay in VR and on a PC
Karol Moniuszko, Tomasz Szymczyk210-216
-
Comparative analysis of the proprietary navigation system and the built-in Unity engine tool
Maciej Kempny, Marcin Barszcz217-224
-
Comparison of the compilation speed of the SCSS and LESS preprocessors
Andrii Berkovskyy, Kostiantyn Voskoboinik, Marcin Badurowicz225-229
-
Performance analysis of machine learning libraries
Ewa Justyna Kędziora, Grzegorz Krzysztof Maksim230-236
-
Graphics display capabilities in web browsers
Damian Sołtysiuk, Maria Skublewska-Paszkowska237-242
-
Comparative analysis of online stores
Arkadiusz Wójtowicz, Marek Miłosz243-246
-
Comparative analysis of Unity and Unreal Engine efficiency in creating virtual exhibitions of 3D scanned models
Agata Ciekanowska, Adam Kiszczak - Gliński, Krzysztof Dziedzic247-253
-
IoT system for remote monitoring of mangrove forest the Sundarbans
Asif Rahman Rumee254-258
Main Article Content
DOI
Authors
Abstract
In-situ monitoring of mangrove forests is expensive, cumbersome, time consuming and error-prone, hence remote approaches are being used widely nowadays. Remote sensing using satellites, UAVs and other devices is incapable of collecting many important types of data required for processing, therefore a prototype of an IoT device is designed and built for monitoring environmental parameters of the largest mangrove forest in the world, the Sundarbans in Bangladesh. The prototype is tested for a few hours in a simulated environment where the readings are updated every 2 seconds and alert notifications are received if an emergency event occurs. The simulation results prove the effectiveness of the proposed device and the feasibility of it for low cost remote monitoring of the mangrove forest.
Keywords:
References
C. Giri, Recent Advancement in Mangrove Forests Mapping and Monitoring of the World Using Earth Observation Satellite Data, Remote Sensing 13(4). (2021) 563, https://doi.org/10.3390/rs13040563. DOI: https://doi.org/10.3390/rs13040563
Y. Jiang, L. Zhang, M. Yan, J. Qi, T. Fu, S. Fan, B. Chen, High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data, Remote Sensing 13(8) (2021) 1529. DOI: https://doi.org/10.3390/rs13081529
K. Mirakhorlou, S. Teimouri, M. Abadeh, Mapping potential of mangrove forests based on site demands (Geomorphological factors and physico-chemical characteristics of soil and water), Environ. Conserv 23 (2017) 90-97.
M. Ruwaimana, B. Satyanarayana, V. Otero, A. M. Muslim, M. A. Syafiq, S. Ibrahim, D. Raymaekers, N. Koedam, F. Dahdouh-Guebas, The advantages of using drones over space-borne imagery in the mapping of mangrove forests, PloS one 13(7) (2018) e0200288. DOI: https://doi.org/10.1371/journal.pone.0200288
T. D. Pham, N. Yokoya, D. T. Bui, K. Yoshino, D. A. Friess, Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges, Remote Sensing 11(3) (2019) 230. DOI: https://doi.org/10.3390/rs11030230
K. D. Purkayastha, R. K. Mishra, A. Shil, and S. N. Pradhan, IoT Based Design of Air Quality Monitoring System Web Server for Android Platform, Wireless Personal Communications 118(4) (2021) 2921-2940. DOI: https://doi.org/10.1007/s11277-021-08162-3
M. Anachkova, S. Domazetovska, Z. Petreski, V. Gavriloski, Design of low-cost wireless noise monitoring sensor unit based on IoT concept, Journal of Vibroengineering 23(4) (2021). DOI: https://doi.org/10.21595/jve.2021.21709
F. Akhter, H. R. Siddiquei, M. E. E. Alahi, K. Jayasundera, S. C. Mukhopadhyay, An IoT-enabled Portable Water Quality Monitoring System with MWCNT/PDMS Multifunctional Sensor for Agricultural Applications, IEEE Internet of Things Journal (2021). DOI: https://doi.org/10.1109/JIOT.2021.3069894
P. Sumathi, R. Subramanian, V. V. Karthikeyan, S. Karthik, Soil monitoring and evaluation system using EDL‐ASQE: Enhanced deep learning model for IoI smart agriculture network, International Journal of Communication Systems (2021) e4859. DOI: https://doi.org/10.1002/dac.4859
M. S. Uddin, E. R. V. Steveninck, M. Stuip, M. A. R. Shah, Economic valuation of provisioning and cultural services of a protected mangrove ecosystem: A case study on Sundarbans Reserve Forest, Bangladesh, Ecosystem Services 5 (2013) 88-93. DOI: https://doi.org/10.1016/j.ecoser.2013.07.002
A. N. M. Abdullah, N. Stacey, S. T. Garnett, B. Myers, Economic dependence on mangrove forest resources for livelihoods in the Sundarbans, Bangladesh, Forest Policy and Economics 64 (2016) 15-24. DOI: https://doi.org/10.1016/j.forpol.2015.12.009
A. Jesin, Packet Tracer Network Simulator, Packt Publishing Ltd, 2014.
Arduino UNO R3 board with DIP ATmega328P, https://www.walmart.com/ip/Arduino-UNO-R3-board-with-DIP-ATmega328P/133534784, [09.08.2021].
SIM808 Module GSM GPRS GPS Development Board IPX SMA with GPS Antenna for Arduino Raspberry Pi Support 2G 3G 4G SIM Card, https://www.aliexpress.com/item/1005001967026161.html?spm=a2g0o.productlist.0.0.5173b0dclMbfH9&algo_pvid=807751fc-8db4-4387-af70-84777f58bd1c&algo_exp_id=807751fc-8db4-4387-af70-84777f58bd1c-2, [09.08.2021].
KOOKYE 16 in 1 Smart Home Sensor Modules Kit for Arduino Raspberry Pi DIY Professional, https://www.walmart.com/ip/KOOKYE-16-in-1-Smart-Home-Sensor-Modules-Kit-for-Arduino-Raspberry-Pi-DIY-Professional/392581400, [09.08.2021].
Article Details
Abstract views: 663
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
