A.L. Samuel, Some studies in machine learning using the game of checkers, IBM Journal of Research and Development 44 (2000) 206-226.
DOI: https://doi.org/10.1147/rd.441.0206
J.M. Peña-Barragán, P.A. Gutiérrez, C. Martínez, J. Six, R.E. Plant, F. López-Granados, Object-Based Image Classification of Summer Crops with Machine Learning Methods, Remote Sensing 6 (2014) 5019-5041.
DOI: https://doi.org/10.3390/rs6065019
P. Mohapatra, B. Panda, S. Swain, Enhancing histopathological breast cancer image classification using deep learning, The International Journal of Innovative Technology and Exploring Engineering 8 (2019) 2024-2032.
N.H. Aung, Y.K. Thu, S.S. Maung, Feature Based Myanmar Fingerspelling Image Classification Using SIFT, SURF and BRIEF, Proceedings of the 17th International Conference on Computer Applications (ICCA 2019) (2019) 245-253.
I.H. Sarker, A.S. Kayes, P. Watters, Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage, Journal of Big Data 6 (2019) 1-28.
DOI: https://doi.org/10.1186/s40537-019-0219-y
R. Razavi, A. Gharipour, M. Gharipour, Depression screening using mobile phone usage metadata: a machine learning approach, Journal of the American Medical Informatics Association 27 (2020) 522-530.
DOI: https://doi.org/10.1093/jamia/ocz221
M. Pennacchiotti, A.-M. Popescu, A Machine Learning Approach to Twitter User Classification, Proceedings of the International AAAI Conference on Web and Social Media 5 (2021) 281-288.
DOI: https://doi.org/10.1609/icwsm.v5i1.14139
Y. Nieto, V. Gacía-Díaz, C. Montenegro, C.C. González, R.G. Crespo, Usage of machine learning for strategic decision making at higher educational institutions, IEEE Access 7 (2019) 75007-75017.
DOI: https://doi.org/10.1109/ACCESS.2019.2919343
L. Bottou, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. LeCun, U.A. Muller, E. Sackinger, P. Simard, V. Vapnik, Comparison of classifier methods: a case study in handwritten digit recognition, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5) 2 (1994) 77-82.
Y. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C.Cortes, J. Denker, H. Drucker, I. Guyon, U.A. Muller, E. Sackinger, P. Simard, Comparison of learning algorithms for handwritten digit recognition, International conference on artificial neural networks 60 (1995) 53-60.
B. El Kessab, C. Daoui, B. Bouikhalene, R. Salouan, A Comparative Study between the Support Vectors Machines and the K-Nearest Neighbors in the Handwritten Latin Numerals Recognition, International Journal of Signal Processing, Image Processing and Pattern Recognition 8 (2015) 325-336.
DOI: https://doi.org/10.14257/ijsip.2015.8.2.31
K. Zhao, Handwritten digit recognition and classification using machine learning, M.Sc. in Computing (Data Analytics), Technological University Dublin (2018).
C. Kaensar, A comparative study on handwriting digit recognition classifier using neural network, support vector machine and k-nearest neighbor, The 9th International Conference on Computing and InformationTechnology (IC2IT2013) (2013) 155-163.
DOI: https://doi.org/10.1007/978-3-642-37371-8_19
N.A. Hamid, N.N. Sjarif, Handwritten recognition using SVM, KNN and neural network, arXiv preprint arXiv:1702.00723 (2017).
T.A. Assegie, P.S. Nair, Handwritten digits recognition with decision tree classification: a machine learning approach, International Journal of Electrical and Computer Engineering (IJECE) 9 (2019) 4446-4451.
DOI: https://doi.org/10.11591/ijece.v9i5.pp4446-4451
L. Breiman, Random forests, UC Berkeley TR567 (1999).