A comparison of conventional and deep learning methods of image classification
Article Sidebar
Open full text
Issue Vol. 21 (2021)
-
Comparison of selected mathematical functions for the analysis of growth behavior of items and physical interpretation of Avrami-Weibull function
Keshra Sangwal259-278
-
Comparison of classical machine learning algorithms in the task of handwritten digits classification
Oleksandr Voloshchenko, Małgorzata Plechawska-Wójcik279-286
-
The comparative analysis of Java frameworks: Spring Boot, Micronaut and Quarkus
Maciej Jeleń, Mariusz Dzieńkowski287-294
-
Usability analysis taking into consideration the aspects of accessibility of selected university websites
Karol Kałan, Damian Karpiuk, Mariusz Dzieńkowski295-302
-
A comparison of conventional and deep learning methods of image classification
Maryna Dovbnych, Małgorzata Plechawska–Wójcik303-308
-
Comparative analysis of connection performance with databases via JDBC interface and ORM programming frameworks
Mateusz Żuchnik, Piotr Kopniak309-315
-
Examination of text's lexis using a Polish dictionary
Roman Voitovych, Edyta Łukasik316-323
-
Comparison of capabilities of the Unity environment and LibGDX in terms of computer game development
Piotr Kosidło, Karol Kowalczyk, Marcin Badurowicz324-329
-
Performance analysis of the TensorFlow library with different optimisation algorithms
Maciej Wadas, Jakub Smołka330-335
-
Analysis of user experience during interaction with selected CMS platforms
Michał Miszczak, Mariusz Dzieńkowski336-343
-
Analysis of polish community on streaming platform twitch.tv during COVID-19 epidemy
Kamil Jeżowski, Marcin Badurowicz344-348
-
A study of the user experience when interacting with applications that work with sports armbands to monitor human activity
Mateusz Kiryczuk, Paweł Kocyła, Mariusz Dzieńkowski349-355
-
Performance comparison of programming interfaces on the example of REST API, GraphQL and gRPC
Mariusz Śliwa, Beata Pańczyk356-361
-
Digital entertainment in the face of COVID-19
Adam Jarszak362-366
-
Symfony and Laravel – a comparative analysis of PHP programming frameworks
Krzysztof Kuflewski, Mariusz Dzieńkowski367-372
-
A comparative analysis of cryptocurrency wallet management tools
Kamil Biernacki, Małgorzata Plechawska-Wójcik373-377
-
Analysis of data storage methods available in the Android SDK
Dominika Kornaś378-382
-
An analysis of the possibility of realization steganography in C#
Piotr Pawlak, Jakub Podgórniak, Grzegorz Kozieł383-390
Main Article Content
DOI
Authors
Abstract
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Keywords:
References
MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist [13.02.2021]
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient–based learning applied to document recognition, Proceedings of the IEEE 86(11) (1998) 2278–2324. DOI: https://doi.org/10.1109/5.726791
S. B. Driss, M. Soua, R. Kachouri, M. Akil, A comparison study between MLP and convolutional neural network models for character recognition, in SPIE Conference on RealTime Image and Video Processing, Anaheim, United States, 10–11 April (2017) 1022306. DOI: https://doi.org/10.1117/12.2262589
N. Sharma, V. Jain, A. Mishra, An analysis of convolutional neural networks for image classification, Procedia computer science 132 (2018) 377–384. DOI: https://doi.org/10.1016/j.procs.2018.05.198
J. M. Peña, P. A. Gutiérrez, C. Hervás–Martínez, J. Six, R. E. Plant, F. López–Granados, Object–based image classification of summer crops with machine learning methods, Remote Sensing 6(6) (2014) 5019–5041. DOI: https://doi.org/10.3390/rs6065019
D. X. Zhou, Universality of deep convolutional neural networks, Applied and computational harmonic analysis 48(2) (2020) 787–794. DOI: https://doi.org/10.1016/j.acha.2019.06.004
I. M. Dheir, A. S. A. Mettleq, A. A. Elsharif, S. S. Abu–Naser, Classifying Nuts Types Using Convolutional Neural Network, International Journal of Academic Information Systems Research 3(12) (2020) 12–18.
Y. Li, J. Nie, X. Chao, Do we really need deep CNN for plant diseases identification?, Computers and Electronics in Agriculture 178 (2020) 105803. DOI: https://doi.org/10.1016/j.compag.2020.105803
P. Sharma, Y. P. S. Berwal, W. Ghai, Performance analysis of deep learning CNN models for disease detection in plants using image segmentation, Information Processing in Agriculture 7(4) (2019) 566–574. DOI: https://doi.org/10.1016/j.inpa.2019.11.001
J. G. A. Barbedo, Impact of data set size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Computers and electronics in agriculture 153 (2018) 46–53. DOI: https://doi.org/10.1016/j.compag.2018.08.013
P. T. T. Ngo, M. Panahi, K. Khosravi, O. Ghorbanzadeh, N. Karimnejad, A. Cerda, S. Lee, Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran, Geoscience Frontiers 12(2) (2020) 505–519. DOI: https://doi.org/10.1016/j.gsf.2020.06.013
I. Banerjee, Y. Ling, M. C. Chen, S. A. Hasan, C. P. Langlotz, N. Moradzadeh, B. Chapman, T. Amrhein, D. Mong, D. L. Rubin, O. Farri, M. P. Lungren, Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification, Artificial intelligence in medicine 97 (2019) 79–88. DOI: https://doi.org/10.1016/j.artmed.2018.11.004
C. L. Chowdhary, M. Mittal, P. A. Pattanaik, Z. Marszalek, An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C–mean clustering and fuzzy SVM algorithm, Sensors 20(14) (2020) 3903. DOI: https://doi.org/10.3390/s20143903
T. Nakaura, T. Higaki, K. Awai, O. Ikeda, Y. Yamashita, A primer for understanding radiology articles about machine learning and deep learning, Diagnostic and Interventional Imaging 101(12) (2020) 763–844. DOI: https://doi.org/10.1016/j.diii.2020.10.001
X. Yang, Y. Ye, X. Li, R. Y. Lau, X. Zhang, X. Huang, Hyperspectral image classification with deep learning models., IEEE Transactions on Geoscience and Remote Sensing 56(9) (2018) 5408–5423. DOI: https://doi.org/10.1109/TGRS.2018.2815613
A. F. Agarap, An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification, arXiv:1712.03541v2 (2019).
Y. Sun, B. Xue, M. Zhang, G. G. Yen, J. Lv, Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification, IEEE Transactions on Cybernetics 50(9) (2020) 3840–3854. DOI: https://doi.org/10.1109/TCYB.2020.2983860
F. Sultana, A. Sufian, P. Dutta, Evolution of image segmentation using deep convolutional neural network: A survey, Knowledge–Based Systems 201–202 (2020) 106062. DOI: https://doi.org/10.1016/j.knosys.2020.106062
O. Sbai, C. Couprie, M. Aubry, Impact of base data set design on few–shot image classification, in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, United Kingdom, August 23–28 (2020) 597–613. DOI: https://doi.org/10.1007/978-3-030-58517-4_35
C. Gambella, B. Ghaddar, J. Naoum–Sawaya, Optimization problems for machine learning: a survey, European Journal of Operational Research 290(3) (2020) 807–828. DOI: https://doi.org/10.1016/j.ejor.2020.08.045
Y. Wang, Y. Li, Y. Song, X. Rong, The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition, Applied Sciences 10(5) (2020) 1897. DOI: https://doi.org/10.3390/app10051897
D. Bashir, G. D. Montanez, S. Sehra, P. S. Segura, J. Lauw, An Information–Theoretic Perspective on Overfitting and Underfitting, in AI 2020: Advances in Artificial Intelligence: 33rd Australasian Joint Conference, Canberra, Australia, November 29–30 (2020) 347–358. DOI: https://doi.org/10.1007/978-3-030-64984-5_27
T. Kiran, Computer Vision Accuracy Analysis with Deep Learning Model Using TensorFlow, International Journal of Innovative Research in Computer Science & Technology (IJIRCST) 8(4) (2020) 2347–5552. DOI: https://doi.org/10.21276/ijircst.2020.8.4.13
T. P. P. Padilha, L. E. A. de Lucena, A Systematic Review About Use of TensorFlow for Image Classification and Word Embedding in the Brazilian Context, Academic Journal on Computing, Engineering and Applied Mathematics 1(2) (2020) 24–27. DOI: https://doi.org/10.20873/uft.2675-3588.2020.v1n2.p24-27
The CIFAR–10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html [13.02.2021]
Article Details
Abstract views: 467
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
