A comparison of conventional and deep learning methods of image classification
Maryna Dovbnych
maryna.dovbnych@pollub.edu.plPolitechnika Lubelska (Poland)
Małgorzata Plechawska–Wójcik
Lublin University of Technology (Poland)
Abstract
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Keywords:
image classification, machine learning, deep learning, convolutional neural networks, multilayer perceptronReferences
MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist [13.02.2021]
Google Scholar
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient–based learning applied to document recognition, Proceedings of the IEEE 86(11) (1998) 2278–2324.
DOI: https://doi.org/10.1109/5.726791
Google Scholar
S. B. Driss, M. Soua, R. Kachouri, M. Akil, A comparison study between MLP and convolutional neural network models for character recognition, in SPIE Conference on RealTime Image and Video Processing, Anaheim, United States, 10–11 April (2017) 1022306.
DOI: https://doi.org/10.1117/12.2262589
Google Scholar
N. Sharma, V. Jain, A. Mishra, An analysis of convolutional neural networks for image classification, Procedia computer science 132 (2018) 377–384.
DOI: https://doi.org/10.1016/j.procs.2018.05.198
Google Scholar
J. M. Peña, P. A. Gutiérrez, C. Hervás–Martínez, J. Six, R. E. Plant, F. López–Granados, Object–based image classification of summer crops with machine learning methods, Remote Sensing 6(6) (2014) 5019–5041.
DOI: https://doi.org/10.3390/rs6065019
Google Scholar
D. X. Zhou, Universality of deep convolutional neural networks, Applied and computational harmonic analysis 48(2) (2020) 787–794.
DOI: https://doi.org/10.1016/j.acha.2019.06.004
Google Scholar
I. M. Dheir, A. S. A. Mettleq, A. A. Elsharif, S. S. Abu–Naser, Classifying Nuts Types Using Convolutional Neural Network, International Journal of Academic Information Systems Research 3(12) (2020) 12–18.
Google Scholar
Y. Li, J. Nie, X. Chao, Do we really need deep CNN for plant diseases identification?, Computers and Electronics in Agriculture 178 (2020) 105803.
DOI: https://doi.org/10.1016/j.compag.2020.105803
Google Scholar
P. Sharma, Y. P. S. Berwal, W. Ghai, Performance analysis of deep learning CNN models for disease detection in plants using image segmentation, Information Processing in Agriculture 7(4) (2019) 566–574.
DOI: https://doi.org/10.1016/j.inpa.2019.11.001
Google Scholar
J. G. A. Barbedo, Impact of data set size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Computers and electronics in agriculture 153 (2018) 46–53.
DOI: https://doi.org/10.1016/j.compag.2018.08.013
Google Scholar
P. T. T. Ngo, M. Panahi, K. Khosravi, O. Ghorbanzadeh, N. Karimnejad, A. Cerda, S. Lee, Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran, Geoscience Frontiers 12(2) (2020) 505–519.
DOI: https://doi.org/10.1016/j.gsf.2020.06.013
Google Scholar
I. Banerjee, Y. Ling, M. C. Chen, S. A. Hasan, C. P. Langlotz, N. Moradzadeh, B. Chapman, T. Amrhein, D. Mong, D. L. Rubin, O. Farri, M. P. Lungren, Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification, Artificial intelligence in medicine 97 (2019) 79–88.
DOI: https://doi.org/10.1016/j.artmed.2018.11.004
Google Scholar
C. L. Chowdhary, M. Mittal, P. A. Pattanaik, Z. Marszalek, An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C–mean clustering and fuzzy SVM algorithm, Sensors 20(14) (2020) 3903.
DOI: https://doi.org/10.3390/s20143903
Google Scholar
T. Nakaura, T. Higaki, K. Awai, O. Ikeda, Y. Yamashita, A primer for understanding radiology articles about machine learning and deep learning, Diagnostic and Interventional Imaging 101(12) (2020) 763–844.
DOI: https://doi.org/10.1016/j.diii.2020.10.001
Google Scholar
X. Yang, Y. Ye, X. Li, R. Y. Lau, X. Zhang, X. Huang, Hyperspectral image classification with deep learning models., IEEE Transactions on Geoscience and Remote Sensing 56(9) (2018) 5408–5423.
DOI: https://doi.org/10.1109/TGRS.2018.2815613
Google Scholar
A. F. Agarap, An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification, arXiv:1712.03541v2 (2019).
Google Scholar
Y. Sun, B. Xue, M. Zhang, G. G. Yen, J. Lv, Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification, IEEE Transactions on Cybernetics 50(9) (2020) 3840–3854.
DOI: https://doi.org/10.1109/TCYB.2020.2983860
Google Scholar
F. Sultana, A. Sufian, P. Dutta, Evolution of image segmentation using deep convolutional neural network: A survey, Knowledge–Based Systems 201–202 (2020) 106062.
DOI: https://doi.org/10.1016/j.knosys.2020.106062
Google Scholar
O. Sbai, C. Couprie, M. Aubry, Impact of base data set design on few–shot image classification, in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, United Kingdom, August 23–28 (2020) 597–613.
DOI: https://doi.org/10.1007/978-3-030-58517-4_35
Google Scholar
C. Gambella, B. Ghaddar, J. Naoum–Sawaya, Optimization problems for machine learning: a survey, European Journal of Operational Research 290(3) (2020) 807–828.
DOI: https://doi.org/10.1016/j.ejor.2020.08.045
Google Scholar
Y. Wang, Y. Li, Y. Song, X. Rong, The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition, Applied Sciences 10(5) (2020) 1897.
DOI: https://doi.org/10.3390/app10051897
Google Scholar
D. Bashir, G. D. Montanez, S. Sehra, P. S. Segura, J. Lauw, An Information–Theoretic Perspective on Overfitting and Underfitting, in AI 2020: Advances in Artificial Intelligence: 33rd Australasian Joint Conference, Canberra, Australia, November 29–30 (2020) 347–358.
DOI: https://doi.org/10.1007/978-3-030-64984-5_27
Google Scholar
T. Kiran, Computer Vision Accuracy Analysis with Deep Learning Model Using TensorFlow, International Journal of Innovative Research in Computer Science & Technology (IJIRCST) 8(4) (2020) 2347–5552.
DOI: https://doi.org/10.21276/ijircst.2020.8.4.13
Google Scholar
T. P. P. Padilha, L. E. A. de Lucena, A Systematic Review About Use of TensorFlow for Image Classification and Word Embedding in the Brazilian Context, Academic Journal on Computing, Engineering and Applied Mathematics 1(2) (2020) 24–27.
DOI: https://doi.org/10.20873/uft.2675-3588.2020.v1n2.p24-27
Google Scholar
The CIFAR–10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html [13.02.2021]
Google Scholar
Authors
Małgorzata Plechawska–WójcikLublin University of Technology Poland
Statistics
Abstract views: 279PDF downloads: 230
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.