Performance analysis of the TensorFlow library with different optimisation algorithms
Article Sidebar
Open full text
Issue Vol. 21 (2021)
-
Comparison of selected mathematical functions for the analysis of growth behavior of items and physical interpretation of Avrami-Weibull function
Keshra Sangwal259-278
-
Comparison of classical machine learning algorithms in the task of handwritten digits classification
Oleksandr Voloshchenko, Małgorzata Plechawska-Wójcik279-286
-
The comparative analysis of Java frameworks: Spring Boot, Micronaut and Quarkus
Maciej Jeleń, Mariusz Dzieńkowski287-294
-
Usability analysis taking into consideration the aspects of accessibility of selected university websites
Karol Kałan, Damian Karpiuk, Mariusz Dzieńkowski295-302
-
A comparison of conventional and deep learning methods of image classification
Maryna Dovbnych, Małgorzata Plechawska–Wójcik303-308
-
Comparative analysis of connection performance with databases via JDBC interface and ORM programming frameworks
Mateusz Żuchnik, Piotr Kopniak309-315
-
Examination of text's lexis using a Polish dictionary
Roman Voitovych, Edyta Łukasik316-323
-
Comparison of capabilities of the Unity environment and LibGDX in terms of computer game development
Piotr Kosidło, Karol Kowalczyk, Marcin Badurowicz324-329
-
Performance analysis of the TensorFlow library with different optimisation algorithms
Maciej Wadas, Jakub Smołka330-335
-
Analysis of user experience during interaction with selected CMS platforms
Michał Miszczak, Mariusz Dzieńkowski336-343
-
Analysis of polish community on streaming platform twitch.tv during COVID-19 epidemy
Kamil Jeżowski, Marcin Badurowicz344-348
-
A study of the user experience when interacting with applications that work with sports armbands to monitor human activity
Mateusz Kiryczuk, Paweł Kocyła, Mariusz Dzieńkowski349-355
-
Performance comparison of programming interfaces on the example of REST API, GraphQL and gRPC
Mariusz Śliwa, Beata Pańczyk356-361
-
Digital entertainment in the face of COVID-19
Adam Jarszak362-366
-
Symfony and Laravel – a comparative analysis of PHP programming frameworks
Krzysztof Kuflewski, Mariusz Dzieńkowski367-372
-
A comparative analysis of cryptocurrency wallet management tools
Kamil Biernacki, Małgorzata Plechawska-Wójcik373-377
-
Analysis of data storage methods available in the Android SDK
Dominika Kornaś378-382
-
An analysis of the possibility of realization steganography in C#
Piotr Pawlak, Jakub Podgórniak, Grzegorz Kozieł383-390
Main Article Content
DOI
Authors
Abstract
This paper presents the results of performance analysis of the Tensorflow library used in machine learning and deep neural networks. The analysis focuses on comparing the parameters obtained when training the neural network model for optimization algorithms: Adam, Nadam, AdaMax, AdaDelta, AdaGrad. Special attention has been paid to the differences between the training efficiency on tasks using microprocessor and graphics card. For the study, neural network models were created in order to recognise Polish handwritten characters. The results obtained showed that the most efficient algorithm is AdaMax, while the computer component used during the research only affects the training time of the neural network model used.
Keywords:
References
J. McCarthy, From here to human-level AI, Artificial Intelligence 171 (2007) 1174–1182, https://doi.org/10.1016/j.artint.2007.10.009. DOI: https://doi.org/10.1016/j.artint.2007.10.009
T. Okuda, S. Shoda, AI-based chatbot service for financial industry, Fujitsu Scientific and Technical Journal 54 (2018) 4–8.
S. Green, J. Heer, C. D. Manning, Natural language translation at the intersection of AI and HCI, Communications of the ACM 58 (2015) 46–53, https://doi.org/10.1145/2767151. DOI: https://doi.org/10.1145/2767151
K. Chakraborty, A. Talele, S. Upadhya, Voice recognition using MFCC algorithm, International Journal of Innovative Research in Advanced Engineering (IJIRAE) 1 (2014) 158–161.
H. Fujiyoshi, T. Hirakawa, T. Yamashita, Deep learning-based image recognition for autonomous driving, IATSS research 43 (2019) 244–252, https://doi.org/10.1016/j.iatssr.2019.11.008. DOI: https://doi.org/10.1016/j.iatssr.2019.11.008
A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, G. Varoquaux, Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics 8 (2014) 1–14, https://doi.org/10.3389/fninf.2014.00014. DOI: https://doi.org/10.3389/fninf.2014.00014
J. Moolayil, J. Moolayil, S. John, Learn Keras for Deep Neural Networks, Birmingham: Apress, 2019. DOI: https://doi.org/10.1007/978-1-4842-4240-7
R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer et al., Theano: A Python framework for fast computation of mathematical expressions, Computing Research Repository (2016) 1–19.
G. Zaccone, M. R. Karim, Deep learning with TensorFlow: Explore neural networks and build intelligent systems with python, Packt Publishing Ltd, 2018.
S. Bahrampour, N. Ramakrishnan, L. Schott, M. Shah, Comparative study of deep learning software frameworks, Computing Research Repository (2015).
S. Raschka, Python. Uczenie maszynowe, Packt Publishing Ltd, 2017.
Firmy wykorzystujące bibliotekę Tensorflow, https://www.tensorflow.org/about/case-studies, [26.06.2021].
Opis architektury biblioteki Tensorflow, https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html, [26.06.2021].
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations (2015) 1–15.
T. Dozat, Incorporating Nesterov Momentum into Adam, International Conference on Learning Representations (2016) 1–4.
A. Lydia, S. Francis, Adagrad–an optimizer for stochastic gradient descent, International Journal of Information and Computing Science 6 (2019) 566–568.
M. D. Zeiler, Adadelta: an adaptive learning rate method, Computing Research Repository (2012).
M. Tokovarov, M. Kaczorowska, M. Miłosz, Development of Extensive Polish Handwritten Characters Database for Text Recognition Research, Advances in Science and Technology Research Journal 14 (2020) 30–38, https://doi.org/10.12913/22998624/122567. DOI: https://doi.org/10.12913/22998624/122567
E. Lukasik, M. Charytanowicz, M. Milosz, M. Tokovarov, M. Kaczorowska, D. Czerwinski, T. Zientarski, Recognition of handwritten Latin characters with diacritics using CNN, Bulletin of the Polish Academy of Sciences: Technical Sciences 69 (2021) 1–12, http://dx.doi.org/10.24425/bpasts.2020.136210.
E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications, Ithaca: Shaker. 1999.
K. Kukuła, Metoda unitaryzacji zerowanej na tle wybranych metod normowania cech diagnostycznych, Acta Scientifica Academiae Ostroviensis 4 (1999) 5–31.
Article Details
Abstract views: 353
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
