J. McCarthy, From here to human-level AI, Artificial Intelligence 171 (2007) 1174–1182, https://doi.org/10.1016/j.artint.2007.10.009.
DOI: https://doi.org/10.1016/j.artint.2007.10.009
T. Okuda, S. Shoda, AI-based chatbot service for financial industry, Fujitsu Scientific and Technical Journal 54 (2018) 4–8.
S. Green, J. Heer, C. D. Manning, Natural language translation at the intersection of AI and HCI, Communications of the ACM 58 (2015) 46–53, https://doi.org/10.1145/2767151.
DOI: https://doi.org/10.1145/2767151
K. Chakraborty, A. Talele, S. Upadhya, Voice recognition using MFCC algorithm, International Journal of Innovative Research in Advanced Engineering (IJIRAE) 1 (2014) 158–161.
H. Fujiyoshi, T. Hirakawa, T. Yamashita, Deep learning-based image recognition for autonomous driving, IATSS research 43 (2019) 244–252, https://doi.org/10.1016/j.iatssr.2019.11.008.
DOI: https://doi.org/10.1016/j.iatssr.2019.11.008
A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, G. Varoquaux, Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics 8 (2014) 1–14, https://doi.org/10.3389/fninf.2014.00014.
DOI: https://doi.org/10.3389/fninf.2014.00014
J. Moolayil, J. Moolayil, S. John, Learn Keras for Deep Neural Networks, Birmingham: Apress, 2019.
DOI: https://doi.org/10.1007/978-1-4842-4240-7
R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer et al., Theano: A Python framework for fast computation of mathematical expressions, Computing Research Repository (2016) 1–19.
G. Zaccone, M. R. Karim, Deep learning with TensorFlow: Explore neural networks and build intelligent systems with python, Packt Publishing Ltd, 2018.
S. Bahrampour, N. Ramakrishnan, L. Schott, M. Shah, Comparative study of deep learning software frameworks, Computing Research Repository (2015).
S. Raschka, Python. Uczenie maszynowe, Packt Publishing Ltd, 2017.
Firmy wykorzystujące bibliotekę Tensorflow, https://www.tensorflow.org/about/case-studies, [26.06.2021].
Opis architektury biblioteki Tensorflow, https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html, [26.06.2021].
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations (2015) 1–15.
T. Dozat, Incorporating Nesterov Momentum into Adam, International Conference on Learning Representations (2016) 1–4.
A. Lydia, S. Francis, Adagrad–an optimizer for stochastic gradient descent, International Journal of Information and Computing Science 6 (2019) 566–568.
M. D. Zeiler, Adadelta: an adaptive learning rate method, Computing Research Repository (2012).
M. Tokovarov, M. Kaczorowska, M. Miłosz, Development of Extensive Polish Handwritten Characters Database for Text Recognition Research, Advances in Science and Technology Research Journal 14 (2020) 30–38, https://doi.org/10.12913/22998624/122567.
DOI: https://doi.org/10.12913/22998624/122567
E. Lukasik, M. Charytanowicz, M. Milosz, M. Tokovarov, M. Kaczorowska, D. Czerwinski, T. Zientarski, Recognition of handwritten Latin characters with diacritics using CNN, Bulletin of the Polish Academy of Sciences: Technical Sciences 69 (2021) 1–12, http://dx.doi.org/10.24425/bpasts.2020.136210.
E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications, Ithaca: Shaker. 1999.
K. Kukuła, Metoda unitaryzacji zerowanej na tle wybranych metod normowania cech diagnostycznych, Acta Scientifica Academiae Ostroviensis 4 (1999) 5–31.