Detrimental Starfish Detection on Embedded System: A Case Study of YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework
Article Sidebar
Open full text
Issue Vol. 23 (2022)
-
Comparative analysis of selected programming frameworks of Java-based web applications
Radosław Książek, Beata Pańczyk66-70
-
Preferences of modern mobile app users
Kamil Kasztelan, Jakub Smołka71-76
-
Web application performance analysis using Angular, React and Vue.js frameworks
Konrad Bielak, Bartłomiej Borek, Małgorzata Plechawska-Wójcik77-83
-
Comparative analysis of software for smart homes
Mateusz Woliński, Tomasz Szymczyk84-88
-
Comparative analysis of message brokers
Mateusz Kaczor, Paweł Powroźnik89-96
-
Comparison of virtualization methods at operating system level
Łukasz Grula, Paweł Powroźnik97-104
-
Detrimental Starfish Detection on Embedded System: A Case Study of YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework
Quoc Toan Nguyen105-111
-
An Analysis of the Knowledge about the Aspects of Cybersecurity and Two-Factor Logging in the Society
Kamil Piłat, Michał Tomasz Pawłowski, Grzegorz Kozieł112-117
-
Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Katarzyna Mróz, Małgorzata Plechawska-Wójcik118-122
-
Performance Comparison of Unit Test Isolation Frameworks
Mateusz Domański, Michał Dołęga, Grzegorz Kozieł123-127
-
Comparative analysis of frameworks using TypeScript to build server applications
Marcin Golec, Małgorzata Plechawska-Wójcik128-134
-
C++ and Java performance on the Android platform
Paweł Wlazło, Jakub Smołka135-139
-
A Novel Inconsequential Encryption Algorithm for Big Data in Cloud Computing
Ravi Kanth Motupalli, Krishna Prasad K.140-144
-
Comparison of LeNet-5, AlexNet and GoogLeNet models in handwriting recognition
Bartosz Michalski, Małgorzata Plechawska-Wójcik145-151
-
Comparative study of scaling parameters and research output of selected highly- and moderately-cited individual authors
Keshra Sangwal152-164
-
Analysis of the performance of iOS applications developed using native and cross-platform technology.
Marcin Michałowski, Maria Skublewska-Paszkowska165-171
Main Article Content
DOI
Authors
Abstract
There is a great range of spectacular coral reefs in the ocean world. Unfortunately, they are in jeopardy, due to an overabundance of one specific starfish called the coral-eating crown-of-thorns starfish (or COTS). This article provides research to deliver innovation in COTS control. Using a deep learning model based on the You Only Look Once version 5 (YOLOv5) deep learning algorithm on an embedded device for COTS detection. It aids professionals in optimizing their time, resources and enhancing efficiency for the preservation of coral reefs all around the world. As a result, the performance over the algorithm was outstanding with Precision: 0.93 - Recall: 0.77 - F1-score: 0.84.
Keywords:
References
L. Jiajun, K. Brano, M. Ross, D. Brendan, M. Torsten, C. Joey, S. Andy, H. Nic, V. R. Karl, T. S. Lachlan, A. A. David, A. A. Mohammad, C. Geoffrey, B. Russ, M. Peyman, S. Daniel, D. Tim, E.M. Kemal, W. Martin, M. Megha, The CSIRO Crown-of-Thorn Starfish Detection Dataset, arXiv 2021, https://doi.org/10.48550/arXiv.2111.14311
W. Junlong, K. Wei, Z. Wei, H. Fengbiao, T. Xuefeng, W. Qiong, Helmet Detection Algorithm Based on the Improved YOLOv5 and Dynamic Anchor Box Matching, Proceedings of the IEEE International Conference on Emergency Science and Information Technology (ICESIT) (2021) 79-83, http://dx.doi.org/10.1109/ICESIT53460.2021.9696525. DOI: https://doi.org/10.1109/ICESIT53460.2021.9696525
Y. Zhong, J. Wang, J. Peng, L. Zhang, Anchor Box Optimization for Object Detection, Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (2020) 1275-1283, http://dx.doi.org/10.1109/WACV45572.2020.9093498. DOI: https://doi.org/10.1109/WACV45572.2020.9093498
T. F. Dima, M. E. Ahmed, Using YOLOv5 Algorithm to Detect and Recognize American Sign Language, Proceedings of the International Conference on Information Technology (ICIT) (2021) 603-607, http://dx.doi.org/10.1109/ICIT52682.2021.9491672. DOI: https://doi.org/10.1109/ICIT52682.2021.9491672
G. Verma, Y. Gupta, A. M. Malik, B. Chapman, Performance Evaluation of Deep Learning Compilers for Edge Inference, Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2021) 858-865, http://dx.doi.org/10.1109/IPDPSW52791.2021.00128. DOI: https://doi.org/10.1109/IPDPSW52791.2021.00128
T. Zhi, S. Chunhua, C. Hao, H. Tong, FCOS: Fully Convolutional One-Stage Object Detection, arXiv 2019, https://doi.org/10.48550/arXiv.1904.01355.
L. Wei, A. Dragomir, E. Dumitru, S. Christian, R. Scott, F. Cheng-Yang, B. C. Alexander, SSD: Single Shot MultiBox Detector, Lecture Notes in Computer Science, 2016, https://doi.org/10.1007/978-3-319-46448-0_2. DOI: https://doi.org/10.1007/978-3-319-46448-0_2
Z. Ni, J. Chen, N. Sang, C. Gao, L. Liu, Light YOLO for high-speed gesture recognition, Proceedings of The 2018 25th IEEE International Conference on Image Processing (ICIP) (2018) 3099-3103, http://dx.doi.org/10.1109/ICIP.2018.8451766. DOI: https://doi.org/10.1109/ICIP.2018.8451766
A. Aleena, S. Ayesha, J. Tauseef, U.K. Asif, Small Object Detection using Deep Learning, arXiv 2022, https://doi.org/10.48550/arXiv.2201.03243.
B. G. Han, J. G. Lee, K. T. Lim, D. H. Choi, Design of a scalable and fast YOLO for edge-computing devices, Sensors 20(23) (2020) 6779-6794, https://doi.org/10.3390/s20236779. DOI: https://doi.org/10.3390/s20236779
B. Liang, S. Wu, K. Xu, J. Hao, Butterfly detection and classification based on integrated YOLO algorithm, arXiv 2020, https://doi.org/10.48550/arXiv.2001.00361. DOI: https://doi.org/10.1007/978-981-15-3308-2_55
C. Shaobin, L. Wei, Embedded System Real-Time Vehicle Detection based on Improved YOLO Network, Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (2019) 1400-1403, http://dx.doi.org/10.1109/IMCEC46724.2019.8984055. DOI: https://doi.org/10.1109/IMCEC46724.2019.8984055
Y. Zhu, C. Yao, X. Bai, Scene text detection and recognition: recent advances and future trends, Frontiers of Computer Science 10 (2016) 19-36, http://dx.doi.org/10.1007/s11704-015-4488-0. DOI: https://doi.org/10.1007/s11704-015-4488-0
Q. Lu, Y. Yuan, Improved YOLO Algorithm for Object Detection in Traffic Video, Proceedings of the International Conference in Communications, Signal Processing and Systems (2019) 1647-1655, http://dx.doi.org/10.1007/978-981-13-9409-6_198. DOI: https://doi.org/10.1007/978-981-13-9409-6_198
R. Shaoqing, H. Kaiming, G. Ross, S. Jian, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv 2016, https://doi.org/10.48550/arXiv.1506.01497.
H. Shijie, W. Zhonghao, S. Fuming, LEDet: A Single-Shot Real-Time Object Detector Based on Low-Light Image Enhancement, The Computer Journal 64(7) 2021 1028-1038, https://doi.org/10.1093/comjnl/bxab055. DOI: https://doi.org/10.1093/comjnl/bxab055
A. A. Choudhury, R. Saha, S. Z. Shoumo, S. R. Tulon, J. Uddin, M. K. Rahman, An efficient way to represent braille using YOLO algorithm, Proceedings of the Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) (2018) 10-19, http://dx.doi.org/10.1109/ICIEV.2018.8641038. DOI: https://doi.org/10.1109/ICIEV.2018.8641038
D. Volivier, M. Saïd, A. M. Sidi, M. Pierre, L. Frédéric, A new Edge Architecture for AI-IoT services deployment, Proceedings of the 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), (2020) 10-19, https://doi.org/10.1016/j.procs.2020.07.006. DOI: https://doi.org/10.1016/j.procs.2020.07.006
A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Communications of the ACM 60(6) (2017) 84-90, https://doi.org/10.1145/3065386. DOI: https://doi.org/10.1145/3065386
D. S. Viraktamath, P. Navalgi, A. Neelopant, Comparison of YOLOv3 and SSD Algorithms, Proceedings of the International Journal of Engineering Research & Technology (IJERT) (2021) 1156-1160.
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) 779-788, http://dx.doi.org/10.1109/CVPR.2016.91. DOI: https://doi.org/10.1109/CVPR.2016.91
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv 2020, https://doi.org/10.48550/arXiv.2004.10934.
B. Jiang, R. Luo, J. Mao, T. Xiao, Y. Jiang, Acquisition of Localization Confidence for Accurate Object Detection, In Proceedings of the European conference on computer vision (ECCV) (2018) 8-14, http://dx.doi.org/10.1007/978-3-030-01264-9_48. DOI: https://doi.org/10.1007/978-3-030-01264-9_48
Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, W. Zuo, Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation, arXiv 2021, https://doi.org/10.48550/arXiv.2005.03572. DOI: https://doi.org/10.1109/TCYB.2021.3095305
K. K. Reddy, M. Shah, Recognizing 50 human action categories of web videos, Machine Vision and Applications 24 (2013) 971-981, https://doi.org/10.1007/s00138-012-0450-4 DOI: https://doi.org/10.1007/s00138-012-0450-4
Article Details
Abstract views: 753
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
