L. Jiajun, K. Brano, M. Ross, D. Brendan, M. Torsten, C. Joey, S. Andy, H. Nic, V. R. Karl, T. S. Lachlan, A. A. David, A. A. Mohammad, C. Geoffrey, B. Russ, M. Peyman, S. Daniel, D. Tim, E.M. Kemal, W. Martin, M. Megha, The CSIRO Crown-of-Thorn Starfish Detection Dataset, arXiv 2021, https://doi.org/10.48550/arXiv.2111.14311
W. Junlong, K. Wei, Z. Wei, H. Fengbiao, T. Xuefeng, W. Qiong, Helmet Detection Algorithm Based on the Improved YOLOv5 and Dynamic Anchor Box Matching, Proceedings of the IEEE International Conference on Emergency Science and Information Technology (ICESIT) (2021) 79-83, http://dx.doi.org/10.1109/ICESIT53460.2021.9696525.
DOI: https://doi.org/10.1109/ICESIT53460.2021.9696525
Y. Zhong, J. Wang, J. Peng, L. Zhang, Anchor Box Optimization for Object Detection, Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (2020) 1275-1283, http://dx.doi.org/10.1109/WACV45572.2020.9093498.
DOI: https://doi.org/10.1109/WACV45572.2020.9093498
T. F. Dima, M. E. Ahmed, Using YOLOv5 Algorithm to Detect and Recognize American Sign Language, Proceedings of the International Conference on Information Technology (ICIT) (2021) 603-607, http://dx.doi.org/10.1109/ICIT52682.2021.9491672.
DOI: https://doi.org/10.1109/ICIT52682.2021.9491672
G. Verma, Y. Gupta, A. M. Malik, B. Chapman, Performance Evaluation of Deep Learning Compilers for Edge Inference, Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2021) 858-865, http://dx.doi.org/10.1109/IPDPSW52791.2021.00128.
DOI: https://doi.org/10.1109/IPDPSW52791.2021.00128
T. Zhi, S. Chunhua, C. Hao, H. Tong, FCOS: Fully Convolutional One-Stage Object Detection, arXiv 2019, https://doi.org/10.48550/arXiv.1904.01355.
L. Wei, A. Dragomir, E. Dumitru, S. Christian, R. Scott, F. Cheng-Yang, B. C. Alexander, SSD: Single Shot MultiBox Detector, Lecture Notes in Computer Science, 2016, https://doi.org/10.1007/978-3-319-46448-0_2.
DOI: https://doi.org/10.1007/978-3-319-46448-0_2
Z. Ni, J. Chen, N. Sang, C. Gao, L. Liu, Light YOLO for high-speed gesture recognition, Proceedings of The 2018 25th IEEE International Conference on Image Processing (ICIP) (2018) 3099-3103, http://dx.doi.org/10.1109/ICIP.2018.8451766.
DOI: https://doi.org/10.1109/ICIP.2018.8451766
A. Aleena, S. Ayesha, J. Tauseef, U.K. Asif, Small Object Detection using Deep Learning, arXiv 2022, https://doi.org/10.48550/arXiv.2201.03243.
B. G. Han, J. G. Lee, K. T. Lim, D. H. Choi, Design of a scalable and fast YOLO for edge-computing devices, Sensors 20(23) (2020) 6779-6794, https://doi.org/10.3390/s20236779.
DOI: https://doi.org/10.3390/s20236779
B. Liang, S. Wu, K. Xu, J. Hao, Butterfly detection and classification based on integrated YOLO algorithm, arXiv 2020, https://doi.org/10.48550/arXiv.2001.00361.
DOI: https://doi.org/10.1007/978-981-15-3308-2_55
C. Shaobin, L. Wei, Embedded System Real-Time Vehicle Detection based on Improved YOLO Network, Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (2019) 1400-1403, http://dx.doi.org/10.1109/IMCEC46724.2019.8984055.
DOI: https://doi.org/10.1109/IMCEC46724.2019.8984055
Y. Zhu, C. Yao, X. Bai, Scene text detection and recognition: recent advances and future trends, Frontiers of Computer Science 10 (2016) 19-36, http://dx.doi.org/10.1007/s11704-015-4488-0.
DOI: https://doi.org/10.1007/s11704-015-4488-0
Q. Lu, Y. Yuan, Improved YOLO Algorithm for Object Detection in Traffic Video, Proceedings of the International Conference in Communications, Signal Processing and Systems (2019) 1647-1655, http://dx.doi.org/10.1007/978-981-13-9409-6_198.
DOI: https://doi.org/10.1007/978-981-13-9409-6_198
R. Shaoqing, H. Kaiming, G. Ross, S. Jian, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv 2016, https://doi.org/10.48550/arXiv.1506.01497.
H. Shijie, W. Zhonghao, S. Fuming, LEDet: A Single-Shot Real-Time Object Detector Based on Low-Light Image Enhancement, The Computer Journal 64(7) 2021 1028-1038, https://doi.org/10.1093/comjnl/bxab055.
DOI: https://doi.org/10.1093/comjnl/bxab055
A. A. Choudhury, R. Saha, S. Z. Shoumo, S. R. Tulon, J. Uddin, M. K. Rahman, An efficient way to represent braille using YOLO algorithm, Proceedings of the Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) (2018) 10-19, http://dx.doi.org/10.1109/ICIEV.2018.8641038.
DOI: https://doi.org/10.1109/ICIEV.2018.8641038
D. Volivier, M. Saïd, A. M. Sidi, M. Pierre, L. Frédéric, A new Edge Architecture for AI-IoT services deployment, Proceedings of the 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), (2020) 10-19, https://doi.org/10.1016/j.procs.2020.07.006.
DOI: https://doi.org/10.1016/j.procs.2020.07.006
A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Communications of the ACM 60(6) (2017) 84-90, https://doi.org/10.1145/3065386.
DOI: https://doi.org/10.1145/3065386
D. S. Viraktamath, P. Navalgi, A. Neelopant, Comparison of YOLOv3 and SSD Algorithms, Proceedings of the International Journal of Engineering Research & Technology (IJERT) (2021) 1156-1160.
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) 779-788, http://dx.doi.org/10.1109/CVPR.2016.91.
DOI: https://doi.org/10.1109/CVPR.2016.91
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv 2020, https://doi.org/10.48550/arXiv.2004.10934.
B. Jiang, R. Luo, J. Mao, T. Xiao, Y. Jiang, Acquisition of Localization Confidence for Accurate Object Detection, In Proceedings of the European conference on computer vision (ECCV) (2018) 8-14, http://dx.doi.org/10.1007/978-3-030-01264-9_48.
DOI: https://doi.org/10.1007/978-3-030-01264-9_48
Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, W. Zuo, Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation, arXiv 2021, https://doi.org/10.48550/arXiv.2005.03572.
DOI: https://doi.org/10.1109/TCYB.2021.3095305
K. K. Reddy, M. Shah, Recognizing 50 human action categories of web videos, Machine Vision and Applications 24 (2013) 971-981, https://doi.org/10.1007/s00138-012-0450-4
DOI: https://doi.org/10.1007/s00138-012-0450-4