Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Article Sidebar
Open full text
Issue Vol. 23 (2022)
-
Comparative analysis of selected programming frameworks of Java-based web applications
Radosław Książek, Beata Pańczyk66-70
-
Preferences of modern mobile app users
Kamil Kasztelan, Jakub Smołka71-76
-
Web application performance analysis using Angular, React and Vue.js frameworks
Konrad Bielak, Bartłomiej Borek, Małgorzata Plechawska-Wójcik77-83
-
Comparative analysis of software for smart homes
Mateusz Woliński, Tomasz Szymczyk84-88
-
Comparative analysis of message brokers
Mateusz Kaczor, Paweł Powroźnik89-96
-
Comparison of virtualization methods at operating system level
Łukasz Grula, Paweł Powroźnik97-104
-
Detrimental Starfish Detection on Embedded System: A Case Study of YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework
Quoc Toan Nguyen105-111
-
An Analysis of the Knowledge about the Aspects of Cybersecurity and Two-Factor Logging in the Society
Kamil Piłat, Michał Tomasz Pawłowski, Grzegorz Kozieł112-117
-
Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Katarzyna Mróz, Małgorzata Plechawska-Wójcik118-122
-
Performance Comparison of Unit Test Isolation Frameworks
Mateusz Domański, Michał Dołęga, Grzegorz Kozieł123-127
-
Comparative analysis of frameworks using TypeScript to build server applications
Marcin Golec, Małgorzata Plechawska-Wójcik128-134
-
C++ and Java performance on the Android platform
Paweł Wlazło, Jakub Smołka135-139
-
A Novel Inconsequential Encryption Algorithm for Big Data in Cloud Computing
Ravi Kanth Motupalli, Krishna Prasad K.140-144
-
Comparison of LeNet-5, AlexNet and GoogLeNet models in handwriting recognition
Bartosz Michalski, Małgorzata Plechawska-Wójcik145-151
-
Comparative study of scaling parameters and research output of selected highly- and moderately-cited individual authors
Keshra Sangwal152-164
-
Analysis of the performance of iOS applications developed using native and cross-platform technology.
Marcin Michałowski, Maria Skublewska-Paszkowska165-171
Main Article Content
DOI
Authors
Abstract
The main objective of this paper is to carry out a research on the analysis of the use of brain-computer interface in everyday life. In this paper, various methods of recording brain activity are presented. Special attention is given to electroencephalography, which was used in the study. The brain activity used in the brain-computer interface and the general principle of brain-computer interface design are also described. The performed study allowed to develop an analysis of the obtained results in the matter of evaluating the usability of brain-computer interfaces using motor imagery. In the final stage, it was possible to evaluate the usability of the brain-computer interface in everyday life.
Keywords:
References
B. Michalik, Analiza porównawcza wydajności klasyfikatorów pod nadzorem w realizacji interfejsu mózg-komputer opartego o paradygmat P300, Praca inżynierska, Politechnika Lubelska, Lublin, 2018.
D. Aminaka, S. Makino, T. M. Rutkowski, Chromatic SSVEP BCI paradigm targeting the higher frequency EEG responses, Asia-Pacific Signal and Information Processing Association, Annual Summit and Conference (APSIPA) (2014) 1-7. DOI: https://doi.org/10.1109/APSIPA.2014.7041761
F. Aloise, P. Aricò, F. Schettini, S. Salinari, D. Mattia, F. Cincotti, Asynchronous gaze-independent event-related potential-based brain–computer interface, Artificial Intelligence in Medicine 59(2) (2013) 61–69. DOI: https://doi.org/10.1016/j.artmed.2013.07.006
R. A. Robbins, Z. Simmons, B. A. Bremer, S. M. Walsh, S. Fischer, Quality of life in ALS is maintained as physical function declines, Neurology 56(4) (2001) 442–444. DOI: https://doi.org/10.1212/WNL.56.4.442
T. Cedro, A. Grzanka, CeDeROM Brain Computer Interface, Information Technologies in Biomedicine (2012) 219-231. DOI: https://doi.org/10.1007/978-3-642-31196-3_22
M. M. Jackson, R. Mappus, Applications for Brain-Computer Interfaces, Brain-Computer Interfaces (2010) 89-103. DOI: https://doi.org/10.1007/978-1-84996-272-8_6
H. Suryotrisongko, F. Samopa, Evaluating OpenBCI Spiderclaw V1 Headwear’s Electrodes Placements for Brain-Computer Interface (BCI) Motor Imagery Application, Procedia Computer Science 72 (2015) 398–405. DOI: https://doi.org/10.1016/j.procs.2015.12.155
K. Cieślak-Blinowska, R. Kuś, J. Ginter, Propagation of EEG activity during finger movement and its imagination, Acta Neurobiologiae experimentalis 66 (2006) 195-206.
C. W. Anderson, E.A. Stolz, S. Shamsunder, Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks, IEEE Transactions on Biomedical Engineering 45(3) (1998) 277-286. DOI: https://doi.org/10.1109/10.661153
M. Kołodziej, A. Majkowski, R. J. Rak, Linear discriminant analysis as a feature reduction technique of EEG signal for brain-computer interfaces, Przegląd Elektrotechniczny 88 (2012) 28-30.
S. Aggarwal, N. Chugh, Review of Machine Learning Techniques for EEG Based Brain Computer Interface, Archives of Computational Methods in Engineering (2022) 1-20. DOI: https://doi.org/10.1007/s11831-021-09684-6
A. Hulewicz, M. Jukiewicz, Analiza sygnałów EEG na potrzeby interfejsu mózg-komputer, Acta Bio-Optica et Informatica Medica. Inżyneria Biomedyczna 3 (2014) 137-143.
A. Cegielska, M. Olszewski, Nieinwazyjny interfejs mózg-komputer do zastosowań technicznych, Pomiary Automatyka Robotyka 3 (2015) 5-14 DOI: https://doi.org/10.14313/PAR_217/5
Article Details
Abstract views: 292
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
