Comparison of LeNet-5, AlexNet and GoogLeNet models in handwriting recognition
Article Sidebar
Open full text
Issue Vol. 23 (2022)
-
Comparative analysis of selected programming frameworks of Java-based web applications
Radosław Książek, Beata Pańczyk66-70
-
Preferences of modern mobile app users
Kamil Kasztelan, Jakub Smołka71-76
-
Web application performance analysis using Angular, React and Vue.js frameworks
Konrad Bielak, Bartłomiej Borek, Małgorzata Plechawska-Wójcik77-83
-
Comparative analysis of software for smart homes
Mateusz Woliński, Tomasz Szymczyk84-88
-
Comparative analysis of message brokers
Mateusz Kaczor, Paweł Powroźnik89-96
-
Comparison of virtualization methods at operating system level
Łukasz Grula, Paweł Powroźnik97-104
-
Detrimental Starfish Detection on Embedded System: A Case Study of YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework
Quoc Toan Nguyen105-111
-
An Analysis of the Knowledge about the Aspects of Cybersecurity and Two-Factor Logging in the Society
Kamil Piłat, Michał Tomasz Pawłowski, Grzegorz Kozieł112-117
-
Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Katarzyna Mróz, Małgorzata Plechawska-Wójcik118-122
-
Performance Comparison of Unit Test Isolation Frameworks
Mateusz Domański, Michał Dołęga, Grzegorz Kozieł123-127
-
Comparative analysis of frameworks using TypeScript to build server applications
Marcin Golec, Małgorzata Plechawska-Wójcik128-134
-
C++ and Java performance on the Android platform
Paweł Wlazło, Jakub Smołka135-139
-
A Novel Inconsequential Encryption Algorithm for Big Data in Cloud Computing
Ravi Kanth Motupalli, Krishna Prasad K.140-144
-
Comparison of LeNet-5, AlexNet and GoogLeNet models in handwriting recognition
Bartosz Michalski, Małgorzata Plechawska-Wójcik145-151
-
Comparative study of scaling parameters and research output of selected highly- and moderately-cited individual authors
Keshra Sangwal152-164
-
Analysis of the performance of iOS applications developed using native and cross-platform technology.
Marcin Michałowski, Maria Skublewska-Paszkowska165-171
Main Article Content
DOI
Authors
bartosz.michalski@pollub.edu.pl
Abstract
The aim of the study was to compare the accuracy of handwriting recognition and the time needed to classify data from the test sets. The Lenet-5, AlexNet and GoogLeNet architectures were used for the research. They are all models of convolutional neural networks. The research was carried out with the use of image databases, handwritten digits MNIST and handwritten letters EMNIST. After the tests, it was found that the GoogLeNet model showed the highest accuracy, and the LeNet-5 the lowest. However, the LeNet-5 model needed the least time to complete the task, and GoogLeNet the most. On the basis of the obtained results, it was found that increasing the complexity of the model positively influences the accuracy of object classification, but significantly increases the demand for computer re-sources.
Keywords:
References
D. O. Hebb, The organisation of behaviour: a neuropsychological theory. New York: Science Editions (1949).
F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review 65(6) (1958) 386. DOI: https://doi.org/10.1037/h0042519
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard., W. Hubbard, L. D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural computation 1(4) (1989) 541-551. DOI: https://doi.org/10.1162/neco.1989.1.4.541
O. Russakovsky, J. Deng, H. Su, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115 (2015) 211–252. https://doi.org/10.1007/s11263-015-0816-y DOI: https://doi.org/10.1007/s11263-015-0816-y
Ü. Budak, A. Şengür, U. Halici, Deep convolutional neural networks for airport detection in remote sensing images. 26th Signal Processing and Communications Applications Conference (SIU) (2018) 1-4, doi: 10.1109/SIU.2018.8404195. DOI: https://doi.org/10.1109/SIU.2018.8404195
M. J. Aitkenhead, A. J. S. McDonald. A neural network face recognition system. Engineering Applications of Artificial Intelligence 16(3) (2003) 167-176. DOI: https://doi.org/10.1016/S0952-1976(03)00042-3
D. S. Maitra, U. Bhattacharya, S. K. Parui, CNN based common approach to handwritten character recognition of multiple scripts. 13th International Conference on Document Analysis and Recognition (ICDAR) (2015) 1021-1025, doi: 10.1109/ICDAR.2015.7333916. DOI: https://doi.org/10.1109/ICDAR.2015.7333916
K. Nygren, Stock prediction–a neural network approach. Royal Instiute of Technology (2004) 1-34.
S. S. Baboo, I. K. Shereef, An efficient weather forecasting system using artificial neural network. International journal of environmental science and development 1(4) (2010) 321. DOI: https://doi.org/10.7763/IJESD.2010.V1.63
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (2009) 248–255. DOI: https://doi.org/10.1109/CVPR.2009.5206848
Y. LeCun, C. Cortes, The MNIST database of handwritten digits (2005).
G. Cohen, S. Afshar, J. Tapson, A. van Schaik, EMNIST: an extension of MNIST to handwritten letters (2017) arXiv:1702.05373. DOI: https://doi.org/10.1109/IJCNN.2017.7966217
Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition in Proceedings of the IEEE 86(11) (1998) 2278-2324, doi: 10.1109/5.726791. DOI: https://doi.org/10.1109/5.726791
A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, K. Weinberger, eds., Advances in Neural Information Processing Systems 25. Curran Associates (2012) 1097–1105. arXiv:1803.01164
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going Deeper with Convolutions (2014) arXiv:1409.4842. DOI: https://doi.org/10.1109/CVPR.2015.7298594
K. O'Shea, R. Nash, An introduction to convolutional neural networks (2015) arXiv preprint arXiv:1511.08458.
Grother, P. J, NIST special database 19. Handprinted forms and characters database, National Institute of Standards and Technology (1995).
W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5(4) (1943) 115-133. DOI: https://doi.org/10.1007/BF02478259
E. Lukasik, M. Charytanowicz, M. Milosz, M. Tokovarov, M. Kaczorowska, D. Czerwinski, T. Zientarski, Recognition of handwritten Latin characters with diacritics using CNN. Bulletin of the Polish Academy of Sciences. Technical Sciences 69(1) (2021).
Article Details
Abstract views: 914
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
