Comparative study of scaling parameters and research output of selected highly- and moderately-cited individual authors
Article Sidebar
Open full text
Issue Vol. 23 (2022)
-
Comparative analysis of selected programming frameworks of Java-based web applications
Radosław Książek, Beata Pańczyk66-70
-
Preferences of modern mobile app users
Kamil Kasztelan, Jakub Smołka71-76
-
Web application performance analysis using Angular, React and Vue.js frameworks
Konrad Bielak, Bartłomiej Borek, Małgorzata Plechawska-Wójcik77-83
-
Comparative analysis of software for smart homes
Mateusz Woliński, Tomasz Szymczyk84-88
-
Comparative analysis of message brokers
Mateusz Kaczor, Paweł Powroźnik89-96
-
Comparison of virtualization methods at operating system level
Łukasz Grula, Paweł Powroźnik97-104
-
Detrimental Starfish Detection on Embedded System: A Case Study of YOLOv5 Deep Learning Algorithm and TensorFlow Lite framework
Quoc Toan Nguyen105-111
-
An Analysis of the Knowledge about the Aspects of Cybersecurity and Two-Factor Logging in the Society
Kamil Piłat, Michał Tomasz Pawłowski, Grzegorz Kozieł112-117
-
Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Katarzyna Mróz, Małgorzata Plechawska-Wójcik118-122
-
Performance Comparison of Unit Test Isolation Frameworks
Mateusz Domański, Michał Dołęga, Grzegorz Kozieł123-127
-
Comparative analysis of frameworks using TypeScript to build server applications
Marcin Golec, Małgorzata Plechawska-Wójcik128-134
-
C++ and Java performance on the Android platform
Paweł Wlazło, Jakub Smołka135-139
-
A Novel Inconsequential Encryption Algorithm for Big Data in Cloud Computing
Ravi Kanth Motupalli, Krishna Prasad K.140-144
-
Comparison of LeNet-5, AlexNet and GoogLeNet models in handwriting recognition
Bartosz Michalski, Małgorzata Plechawska-Wójcik145-151
-
Comparative study of scaling parameters and research output of selected highly- and moderately-cited individual authors
Keshra Sangwal152-164
-
Analysis of the performance of iOS applications developed using native and cross-platform technology.
Marcin Michałowski, Maria Skublewska-Paszkowska165-171
Main Article Content
DOI
Authors
Abstract
The real data of cumulative citations ln of selected nth paper of individual N papers published by some highly- and moderately-cited individual authors are analyzed to compare Hirsch and Hirsch-type indices h, h1, hf and hm, and citation radii R and Rf from consideration of: (1) the number An of coauthors of the paper, (2) the normalization of citations ln and cumulative fraction lnf of citation of the nth paper by mean and median citations of the citations ln of all Nc cited papers, and (3) the determination of effective rank neff of the lnf citations. Analysis of the ln(n), lnf(n) and lnf(neff) data was also carried out by using a Langmuir-type function l = l0[1-aKn/(1+Kn)], where l denotes the citations ln and lnf of all cited Nc papers arranged in the decreasing order, a is an effectiveness parameter, K is the so-called Langmuir constant, n denotes the rank n or neff of citations and l0 is the value of l when n or neff approaches zero. For a comparison of the publication output of different authors it was found that the hm index is more consistent than other indices, and it can be normalized to account for the publication career of different authors. However, Langmuir-type function is not adequate for comparison of the publication output of different authors because it describes the rank-order distribution patterns satisfactorily in terms of two parameters. To compare the publication output of different authors independent of their career length t, it is suggested to use scaling parameters h/t, hf/t and hm/t.
Keywords:
References
J.E. Hirsch, An index to quantify an individual’s scientific research output, Proceedings of the National academy of Sciences of the United States of America 102(46) (2005) 16569-16572. DOI: https://doi.org/10.1073/pnas.0507655102
M. Kosmulski, A new Hirsch-type index saves time and works equally well as the original h-index, ISSI Newsletter 2(3) (2006) 4-6.
B. Jin, L. Liang, R. Rousseau, L. Egghe, The R- and AR-indices: complementing the h-index, Chinese Sci-ence Bulletin 52(6) (2007) 855-863. DOI: https://doi.org/10.1007/s11434-007-0145-9
S. Alonso, F. Cabrerizo, E. Herrera-Viedma, F. Herrera, h-index: A review focused in its variants, computation and standardization for different scientific fields, Journal of Informetrics 3(4) (2009) 273-280. DOI: https://doi.org/10.1016/j.joi.2009.04.001
T.R. Anderson, R.K.S. Hankin, P.D. Killworth, Beyond the Durfee square: Enhancing the h-index to score total publication output, Scientometrics 76(3) (2008) 577-588. DOI: https://doi.org/10.1007/s11192-007-2071-2
Q.L. Burrell, On Hirsch’s h, Egghe’s g and Kosmulski’s h(2). Scientometrics 79(1) (2009) 79-91. DOI: https://doi.org/10.1007/s11192-009-0405-3
L. Egghe, Characteristic scores and scales based on h-type indices. Journal of Informetrics 4(1) (2010) 14–22. DOI: https://doi.org/10.1016/j.joi.2009.06.001
F. Franceschini, D. Maisano, The Hirsch spectrum: a novel tool for analyzing scientific journals, Journal of Informetrics 4(1) (2010) 64-73. DOI: https://doi.org/10.1016/j.joi.2009.08.003
F. Franceschini, D. Maisano, The citation triad: an overview of a scientist’s publication output based on Ferrers diagrams, Journal of Informetrics 4(4) (2010) 503-511. DOI: https://doi.org/10.1016/j.joi.2010.05.004
W. Glänzel, A. Schubert, Hirsch-type characteristics of the tail of distributions. The generalized h-index, Journal of Informetrics 4(1) (2010) 118-123. DOI: https://doi.org/10.1016/j.joi.2009.10.002
A. Tietze, P. Hofmann, The h-index and multi-author hm-index for individual researchers in condensed matter physics, Scientometrics 119 (2019) 171-185. DOI: https://doi.org/10.1007/s11192-019-03051-w
M. Ameer, M.T. Afzal, Evaluation of h-index and its qualitative and quantitative variants in Neuroscience, Scientometrics 121 (2019) 653-673. DOI: https://doi.org/10.1007/s11192-019-03209-6
S. Li, H. Shen, P. Bao, X, Cheng, hu-index: a unified index to quantify individuals across disciplines, Scientometrics 126 (2021) 3209-3226. DOI: https://doi.org/10.1007/s11192-021-03879-1
M. Kosmulski, New seniority-independent Hirsh-type index, Journal of Informetrics 3(4) (2009) 341-347. DOI: https://doi.org/10.1016/j.joi.2009.05.003
H.A. Abt, A publication index that is independent of age, Scientometrics 91(3) (2011) 1053-1058.
R. Mannella, P. Rossi, On the time dependence of the h-index, Journal of Informetrics 7(1) (2013) 176-182. DOI: https://doi.org/10.1016/j.joi.2012.10.003
D. Pradhan, P.S. Paul, U. Maheswari, S. Nandi, T. Chakraborty, C3-index: a PageRank based multi-faceted metric for authors’ performance measurement, Scientometrics 110 (2017) 253–273. DOI: https://doi.org/10.1007/s11192-016-2168-y
P.D. Batista, M.G. Campiteli, O. Kinouchi, & A.S. Martinez, Is it possible to compare researchers with different scientific interests?, Scientometrics 68(1) (2006) 179-189. DOI: https://doi.org/10.1007/s11192-006-0090-4
M. Ausloos, A simple law about co-authors and their ranking: The co-author core, Scientometrics 95(3) (2013) 895-909 DOI: https://doi.org/10.1007/s11192-012-0936-x
D.D.S. Price, Multiple authorship, Science 212(4498) (1981) 986. DOI: https://doi.org/10.1126/science.212.4498.986.b
S.E. Hodge, D.A. Greenberg, Publication credit, Science 212(4498) (1981) 950. DOI: https://doi.org/10.1126/science.213.4511.950.b
P. Vinkler, Research contribution, authorship and team cooperativeness, Scientometrics 26(1) (1993) 213-230. DOI: https://doi.org/10.1007/BF02016801
A.F. Pereira de Araújo, Increasing discrepancy between absolute and effective indexes of research output in a Brazilian academic department, Scientometrics 74(3) (2008) 425-437. DOI: https://doi.org/10.1007/s11192-007-1817-6
N. Assimakis, M. Adam, A new author’s productivity index: p-index, Scientometrics 85(2) (2010) 415-427. DOI: https://doi.org/10.1007/s11192-010-0255-z
R.S.J. Tol, Credit where credit’s due: accounting for co-authorship in citation counts, Scientometrics 89(1) (2011) 291-299. DOI: https://doi.org/10.1007/s11192-011-0451-5
S. Sahoo, Analyzing research performance: proposition of a new complementary index, Scientometrics 108(2) (2016) 489-504. DOI: https://doi.org/10.1007/s11192-016-1988-0
J.-W. Hsu, D.-W. Huang, Correlation between impact and collaboration, Scientometrics 86(1) (2011) 317-324. DOI: https://doi.org/10.1007/s11192-010-0265-x
M. Kosmulski, The order in the lists of authors in multi-author papers revisited, Journal of Informetrics 6(4) (2012) 639-644. DOI: https://doi.org/10.1016/j.joi.2012.06.006
C.H. Sekercioglu, Quantifying coauthor contributions, Science 322(5900) (2008) 371. DOI: https://doi.org/10.1126/science.322.5900.371a
N.T. Hagen, Credit for coauthors, Science 323(5914) (2009) 583. DOI: https://doi.org/10.1126/science.323.5914.583a
N.T. Hagen, Harmonic publication and citation count-ing: sharing authorship credit equitably – not equally, geometrically or arithmetically, Scientometrics 84(3) (2010) 785-793. DOI: https://doi.org/10.1007/s11192-009-0129-4
N.T. Hagen, Harmonic coauthor credit: A parsimonious quantification of the byline hierarchy, Journal of Informetrics 7(3) (2013) 784-793. DOI: https://doi.org/10.1016/j.joi.2013.06.005
C.T. Zhang, A proposal for calculating weighted cita-tions based on author rank, EMBO Reports 10(5) (2009) 416-417. DOI: https://doi.org/10.1038/embor.2009.74
I. Podlubny, Comparison of scientific impact expressed by the number of citations in different fields of science, Scientometrics 64(1) (2005) 95-99. DOI: https://doi.org/10.1007/s11192-005-0240-0
J.E. Iglesias, C. Pecharroman, Scaling the h-index for different scientific ISI fields, Scientometrics 73(3) (2007) 303-320. DOI: https://doi.org/10.1007/s11192-007-1805-x
J. Lundberg, Lifting the crown – Citation z-score, Journal of Informetrics 1(2) (2007) 145-154. DOI: https://doi.org/10.1016/j.joi.2006.09.007
F. Radicchi, S., Fortunado, C. Castellano, Universality of citation distributions: Towards an objective measure of scientific impact, Proceedings of the National academy of Sciences of the United States of America 105(45) (2008) 17268–17272. DOI: https://doi.org/10.1073/pnas.0806977105
G. Abramo, T. Cicero, C.A. D’Angelo, Revisiting the scaling of citations for research assessment, Journal of Informetrics 6(3) (2012) 420-479. DOI: https://doi.org/10.1016/j.joi.2012.03.005
L. Bornmann, H.-D. Daniel, Universality of citation distribution – a validation of Radicchi et al.’s relative indicator cf = c/c0 at the micro level using data from chemistry, Journal of the American Society for Infor-mation Science and Technology 60(8) (2009) 1664-1670. DOI: https://doi.org/10.1002/asi.21076
J.E. Hirsch, An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship, Scientometrics 85(3) (2010) 741-754. DOI: https://doi.org/10.1007/s11192-010-0193-9
L. Egghe, Mathematical theory of the h- and g-index in case of fractional counting of authorship, Journal of the American Society for Information Science and Technology 59(10) (2008) 1608-1616. DOI: https://doi.org/10.1002/asi.20845
M. Schreiber, A modification of the h-index: The hm-index accounts for multi-authored manuscripts, Journal of Informetrics 2(3) (2008) 211-216. DOI: https://doi.org/10.1016/j.joi.2008.05.001
M. Schreiber, A case study of the modified Hirsch index hm accounting for multiple co-authors, Journal of the American Society for Information Science and Technology 60(6) (2009) 1274-1282. DOI: https://doi.org/10.1002/asi.21057
G. Abramo, C.A. D’Angelo, F. Rosati, The importance of accounting for the number of co-authors and their order when assessing research performance at the individual level in the life sciences, Journal of Informetrics 7 (2013) 198-208. DOI: https://doi.org/10.1016/j.joi.2012.11.003
M. Dunaiski, J. Geldenhuys, W. Visser, Author ranking evaluation at scale, Journal of Informetrics 12 (2018) 679-702. DOI: https://doi.org/10.1016/j.joi.2018.06.004
M. Salman, M.M. Ahmed, M.T. Afzal, Assessment of author ranking indices based on multi-authorship, Scientometrics 126 (2021) 4153-4172. DOI: https://doi.org/10.1007/s11192-021-03906-1
L. Egghe, A rationale for the Hirsch-index rank-order distrubtion and a comparison with the impact factor rank-order distribution, Journal of the American Society for Information Science and Technology 60(10) (2009) 2142-2144. DOI: https://doi.org/10.1002/asi.21121
L. Egghe, R. Rousseau, An informetric model for the Hirsch-index, Scientometrics 69(1), (2006) 121-129. DOI: https://doi.org/10.1007/s11192-006-0143-8
L. Egghe, R. Rousseau, The Hirsch index of a shifted Lotka function and its relation with the impact factor, Journal of the American Society for Information Sci-ence and Technology 63(5) (2012) 1048-1053. DOI: https://doi.org/10.1002/asi.22617
K. Sangwal, Comparison of different mathematical functions for the analysis of citation distribution of papers of individual authors, Journal of Informetrics 7(1) (2013) 36-49. DOI: https://doi.org/10.1016/j.joi.2012.09.002
Q.L. Burrell, Formulae for the h-index: A lack of ro-bustness in Lotkaian informetrics?, Journal of the American Society for Information Science and Tech-nology 64(7) (2013) 1507-1514. DOI: https://doi.org/10.1002/asi.22845
K. Sangwal, Citation and impact factor distributions of scientific journals published in individual countries, Journal of Informetrics 7(3) (2013) 487-504. DOI: https://doi.org/10.1016/j.joi.2013.01.011
K. Sangwal, Distributions of citation of papers of indi-vidual authors publishing in different scientific disci-plines: Application of Langmuir-type function, Journal of Informetrics 8(4) (2014) 972-984. DOI: https://doi.org/10.1016/j.joi.2014.09.009
K.Y. Chuang, Y.S. Ho, Bibliometric profile of top-cited single-author articles in the Science Citation Index Expanded, Journal of Informetrics 8(4) (2014) 951-962. DOI: https://doi.org/10.1016/j.joi.2014.09.008
Q.L. Burrell, Hirsch’s h-index: A stochastic model, Journal of Informetrics 1(1) (2007) 16-25. DOI: https://doi.org/10.1016/j.joi.2006.07.001
Q.L. Burrell, The h-index: A case of the tail wagging the dog?, Journal of Informetrics 7(3) (2013) 774-783. DOI: https://doi.org/10.1016/j.joi.2013.06.004
K. Sangwal, On the relationship between citations of publication output and Hirsch index h of authors: conceptualization of tapered Hirsch index hT, circular citation area radius R and citation acceleration a, Scientometrics 93(3) (2012) 987-1004. DOI: https://doi.org/10.1007/s11192-012-0805-7
K. Sangwal, On the age-independent publication index, Scientometrics 91(3) (2012) 1053-1058 DOI: https://doi.org/10.1007/s11192-012-0628-6
Article Details
Abstract views: 238
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
