Performance comparison between selected chess engines
Article Sidebar
Open full text
Issue Vol. 24 (2022)
-
Learning speed or prediction accuracy? Comparative analysis of program-ming frameworks for artificial intelligence
Konrad Zdeb, Piotr Żukiewicz, Edyta Łukasik172-175
-
Comparative analysis of the effectiveness of OWASP ZAP, Burp Suite, Nikto and Skipfish in testing the security of web applications
Aleksandra Kondraciuk, Aleksandra Bartos, Beata Pańczyk176-180
-
Comparative analysis of the functionality and quality of the interface of chosen applications for ordering food
Maciej Gieroba, Marek Miłosz181-188
-
Comparative analysis of the quality of recorded sound in the function of different recording formats
Andrzej Król, Tomasz Szymczyk189-194
-
Comparison of the most popular operating systems in terms of functionalities
Jacek Lato, Marek Mucha, Tomasz Szymczyk195-202
-
Analysis of the medical personnel's views on keeping records in an electronic form
Maciej Mikrut203-209
-
Analysis of the functionality of voice and video communication systems
Aleksandra Piątkowska210-217
-
Comparative analysis of the Cycles and Eevee graphics engines on the example of rendering 3D models of archaeological artifacts
Sebastian Dudek, Krzysztof Dziedzic218-223
-
Comparative analysis of React, Next and Gatsby programming frameworks for creating SPA applications
Adam Świątkowski, Karol Ścibior224-227
-
Performance comparison between selected chess engines
Maciej Sojka228-235
-
Comparison of the offer of selected cloud service providers from the point of view of implementing IT projects based on open code
Porównanie ofert wybranych dostawców usług chmurowych z punktu wi-dzenia realizacji projektów informatycznych opartych o otwarty kodJan Baran, Sławomir Przyłucki236-241 -
Comparative analysis of reactive and imperative approach in Java web application development
Sebastian Iwanowski, Grzegorz Kozieł242-249
-
Performance analysis of relational databases MySQL, PostgreSQL and Oracle using Doctrine libraries
Marcin Choina, Maria Skublewska-Paszkowska250-257
-
A comparative analysis of tools dedicated to project management
Piotr Pawłowski; Małgorzata Plechawska-Wójcik258-264
-
Performance analysis of Laravel and Yii2 frameworks based on the MVC architectural pattern and PHP language
Konrad Sławomir Węgrzecki, Mariusz Dzieńkowski265-272
-
Comparative analysis of Java and Dart programming languages in terms of suitability for creating mobile applications
Łukasz Kozłowski, Grzegorz Kozieł273-279
Main Article Content
DOI
Authors
Abstract
Selected chess engines were compared to each other in terms of performance, using Lucas Chess. The list of engines was cut into three categories, depending on strength in ELO points. The point of this study is to find the strongest and the lightest engines in each category. Then, each category was tested using three different starting positions. White, black and overall wins were highlighted. At the same time, data of CPU and RAM usage of each engine was collected. A script was developed to print CPU and RAM usage of a specific process. Maximum and average percent of used CPU thread and RAM were highlighted. Chess engines with most amount of wins were, from weakest to strongest: Bikjump, Rybka and Stockfish. Least amount of system resources was consumed by: Cinnamon, Demolito and Critter.
Keywords:
References
A. Elo, The Proposed USCF Rating System, Its Development, Theory, and Applications, Chess Life 22 (1967) 242-247.
International Chess Federation - strona główna, https://www.fide.com/, [25.05.2022].
V. V. Vučković, Realization of the Chess Mate Solver Application., Yugoslav Journal of Operations Research 14 (2004) 273-288, https://doi.org/10.2298/YJOR0402273V. DOI: https://doi.org/10.2298/YJOR0402273V
W. B. Putra, L. Heryawan, Applying Alpha-beta Algorithm In A Chess Engine, Jurnal Teknosains UGM 6 (2016) 37-43. DOI: https://doi.org/10.22146/teknosains.11380
H. Zang, Z. Yu, X. Wan, Automated chess commentator powered by neural chess engine, arXiv (2019), https://doi.org/10.48550/arXiv.1909.10413. DOI: https://doi.org/10.18653/v1/P19-1597
M. Block, M. Bader, E. Tapia, M. Ramírez, K. Gunnarsson, E. Cuevas, D. Zaldivar, R. Rojas, Using Reinforcement Learning in Chess Engines, Research in Computing Science 35 (2008) 31-40.
N. Hesham, O. Abu-Elnasr, S. Elmougy, A New Action-Based Reasoning Approach for Playing Chess, Computers, Materials and Continua 69 (2021) 175-190. DOI: https://doi.org/10.32604/cmc.2021.015168
S. K. Bimonugroho, N. U. Maulidevi, A Hybrid Approach to Representing Chessboard using Bitboard and Compact Chessboard Representation, IOP Conference Series: Materials Science and Engineering 803 (2020), https://doi.org/10.1088/1757-899X/803/1/012018. DOI: https://doi.org/10.1088/1757-899X/803/1/012018
S. Maharaj, N. Polson, A. Turk, Chess AI: Competing Paradigms for Machine Intelligence, Entropy 24 (2022) 550, https://doi.org/10.48550/arXiv.2109.11602. DOI: https://doi.org/10.3390/e24040550
Strona internetowa programu Lucas Chess, https://lucaschess.pythonanywhere.com/home, [25.05.2022].
Magiczne tablice bitów - definicja, https://www.chessprogramming.org/Magic_Bitboards, [25.05.2022].
Leniwe SMP - definicja, https://www.chessprogramming.org/Lazy_SMP, [25.05.2022].
Okno aspiracji - definicja, https://www.chessprogramming.org/Aspiration_Windows, [25.05.2022].
Mistrzostwa ACCA World Computer Rapid Chess Championship 2016, https://www.chessprogramming.org/WCRCC_2016, [25.05.2022].
B. Steinbach, M. Werner, XBOOLE-CUDA -- Fast Boolean Operations on the GPU (2014).
Double bongcloud: why grandmasters are playing the worst move in chess, https://www.theguardian.com/sport/2021/mar/18/bongcloud-meme-opening-carlsen-nakamura, [20.06.2022]
Biblioteka psutil - dokumentacja, https://psutil.readthedocs.io/en/latest/, [25.05.2022].
Article Details
Abstract views: 898
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
