Performance analysis of working with databases with Spring and Symfony
Ewa Wieleba
ewa.szewczak@pollub.edu.plLublin University of Technology (Poland)
Bartłomiej Wieleba
Lublin University of Technology (Poland)
Abstract
The article presents a comparative analysis of the efficiency of work with MySQL and PostgreSQL databases, using the popular Spring (Java) and Symfony programming frameworks. The research was carried out with the use of proprietary test applications that perform CRUD operations on a different number of records. The test results showed that the execution time of writing and deleting data using the Spring application is longer than when performing the same operations in Symfony. On the other hand, in the case of UPDATE and SELECT operations, the operation execution time with the Spring application turned out to be shorter than in the case of Symfony. The test results also confirmed that, regardless of the development framework, MySQL is less efficient than PostgreSQL while operating on 10 000 records except for DELETE, where MySQL combined with Symfony is the fastest.
Keywords:
comparative analysis; Spring, Symfony, relational databasesReferences
P. Rymarski, G. Kozieł, Analiza możliwości optymalizacji zapytań SQL, Journal of Computer Sciences Institute 19 (2021) 151–158.
DOI: https://doi.org/10.35784/jcsi.2641
Google Scholar
K. Lachewicz, Analiza wydajności systemów bazodanowych: MySQL, MS SQL, PostgreSQL w kontekście aplikacji internetowych, Journal of Computer Sciences Institute 14 (2020) 94–100.
DOI: https://doi.org/10.35784/jcsi.1583
Google Scholar
R. Wodyk, M. Skublewska-Paszkowska, Porównanie wydajności relacyjnych baz danych SQL Server, MySQL oraz PostgreSQL z zastosowaniem aplikacji webowej i frameworku Laravel, Journal of Computer Sciences Institute 17 (2020) 358–364.
DOI: https://doi.org/10.35784/jcsi.2279
Google Scholar
M. Laaziri, K. Benmoussa, S. Khoulji, K. M. Larbi, A. E. Yamami, A comparative study of laravel and symfony PHP frameworks, International Journal of Electrical and Computer Engineering 9 (2019) 704-712.
DOI: https://doi.org/10.11591/ijece.v9i1.pp704-712
Google Scholar
S. Andjelic, S. Obradovic, B. Gacesa, A performance analysis of the dbms – mysql vs postgresql, Komunikacie 10 (2008) 53-57.
DOI: https://doi.org/10.26552/com.C.2008.4.53-57
Google Scholar
R. Kleweka, W. Truskowski, M. Skublewska-Paszkowska, Porównanie wydajności baz danych MySQL, MSSQL, PostgreSQL oraz Oracle z uwzględnieniem wirtualizacji, Journal of Computer Sciences Institute 16 (2020) 279–284.
DOI: https://doi.org/10.35784/jcsi.2026
Google Scholar
S. Stets, G. Kozieł, Comparative analysis of databases working under the control of Windows system, Journal of Computer Sciences Institute 13 (2019) 298–301.
DOI: https://doi.org/10.35784/jcsi.1323
Google Scholar
S.T Ali, J. Long, Quality Evaluation of PHP Frameworks, International Journal of Scientific & Engineering Research 10 (2019) 1454-1458.
DOI: https://doi.org/10.14299/ijser.2019.10.05
Google Scholar
N. Prokofyeva, V. Boltunova, Analysis and Practical Application of PHP Frameworks in Development of Web Information Systems, Procedia Computer Science 104 (2017) 51 – 56.
DOI: https://doi.org/10.1016/j.procs.2017.01.059
Google Scholar
Baza danych PostgreSQL, https://vavatech.pl/technologie/bazy-danych/postgresql, [06.06.2022].
Google Scholar
Dokumentacja SpringBoot, https://spring.io/projects/spring-boot , [07.06.2022].
Google Scholar
Dokumentacja Symfony, https://symfony.com/doc/current/index.html, [15.09.2022].
Google Scholar
Dokumentacja PostgreSQL, https://www.postgresql.org/docs/, [15.09.2022].
Google Scholar
Najpopularniejsze szkielety programistyczne do tworzenia aplikacji przy użyciu języka PHP w 2022 roku, https://www.linkedin.com/pulse/2022-most-popular-php-frameworks-infogenlabsinc/, [15.09.2022].
Google Scholar
Najpopularniejsze szkielety programistyczne do tworzenia aplikacji przy użyciu języka Java, https://www.geeksforgeeks.org/top-10-most-popular-java-frameworks-for-web-development/, [15.09.2022].
Google Scholar
Ranking popularności silników baz danych, https://db-engines.com/en/ranking, [12.10.2022].
Google Scholar
Dokumentacja szkieletu programistycznego Hibernate, https://hibernate.org/orm/documentation/6.1/, [12.10.2022].
Google Scholar
Dokumentacja biblioteki PHP Doctrine, https://symfony.com/doc/current/doctrine.html, [12.10.2022].
Google Scholar
Dokumentacja silnika baz danych MySQL, https://dev.mysql.com/doc/, [12.10.2022].
Google Scholar
Authors
Bartłomiej WielebaLublin University of Technology Poland
Statistics
Abstract views: 311PDF downloads: 273
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.