The comparative performance analysis of selected relational database systems
Abstract
The objective of this study was to carry out a performance analysis of the following database systems: MySQL, PostgreSQL and Microsoft SQL Server. For this purpose scripts were used to measure execution times of selecting, updating and inserting data. Furthermore, three data sets were utilized consisting of 100, 1000 and 10000 rows. The experiment included nine cases depending on the query type and the data set. For each case, thirty five test trials were conducted while first five trials were ignored i.a. because of cache storage. The statistical test was performed for the results and the trials in which the DBMS achieved best times were counted. For each case best systems were acknowledged and the most efficient system of the experiment was determined along with systems for each operation type.
Keywords:
performance analysis, MySQL, PostgreSQL, Microsoft SQL ServerReferences
M. Grudzień, K. Korgol, D. Gutek, Porównanie możliwości wykorzystania oraz analiza wydajności baz danych na systemach mobilnych, praca magisterska, Politechnika Lubelska, Lublin, 2016.
DOI: https://doi.org/10.35784/jcsi.129
Google Scholar
R. Kleweka, W. Truskowski, M. Skublewska-Paszkowska, Porównanie wydajności baz danych MySQL, MSSQL, PostgreSQL oraz Oracle z uwzględnieniem wirtualizacji, praca magisterska, Politechnika Lubelska, Lublin, 2020.
Google Scholar
K. Lachewicz, Analiza wydajności systemów bazodanowych: MySQL, MS SQL, PostgreSQL w kontekście aplikacji internetowych, praca magisterska, Politechnika Lubelska, Lublin, 2020.
Google Scholar
S. Stets, G. Kozieł, Analiza porównawcza wydajności baz danych pracujących pod kontrolą systemu Windows, praca magisterska, Politechnika Lubelska, Lublin, 2019.
Google Scholar
S. Kulshrestha, S. Sachdeva, Performance comparison for data storage - Db4o and MySQL databases, 2014 Seventh International Conference on Contemporary Computing (IC3) (2014) 166-170.
DOI: https://doi.org/10.1109/IC3.2014.6897167
Google Scholar
R. Poljak, P. Pošcić, D. Jakšić, Comparative Analysis of the Selected Relational Database Management Systems, 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2017) 1496-1500.
DOI: https://doi.org/10.23919/MIPRO.2017.7973658
Google Scholar
R. Kleweka, W. Truskowski, M. Skublewska-Paszkowska, Porównanie wydajności baz danych MySQL, MSSQL, PostgreSQL oraz Oracle z uwzględnieniem wirtualizacji, Journal of Computer Sciences Institute 16 (2020) 279-284.
DOI: https://doi.org/10.35784/jcsi.2026
Google Scholar
Y. Abubakar, Benchmarking popular open source RDBMS: a performance evaluation for IT professionals, International Journal of Advanced Computer Technology (IJACT) 3 (2014) 39-44.
Google Scholar
S. Tongkaw, A. Tongkaw, A comparison of database performance of MariaDB and MySQL with OLTP workload, 2016 IEEE Conference on Open Systems (ICOS) (2016) 117-119.
DOI: https://doi.org/10.1109/ICOS.2016.7881999
Google Scholar
M. -G. Jung, S. -A. Youn, J. Bae, Y. -L. Choi, A Study on Data Input and Output Performance Comparison of MongoDB and PostgreSQL in the Big Data Environment, 2015 8th International Conference on Database Theory and Application (DTA) (2015) 14-17.
DOI: https://doi.org/10.1109/DTA.2015.14
Google Scholar
M. M. Eyada, W. Saber, M. M. El Genidy, F. Amer, Performance Evaluation of IoT Data Management Using MongoDB Versus MySQL Databases in Different Cloud Environments, IEEE Access 8 (2020) 110656-110668.
DOI: https://doi.org/10.1109/ACCESS.2020.3002164
Google Scholar
H. Fatima, K. Wasnik, Comparison of SQL, NoSQL and NewSQL databases for internet of things, 2016 IEEE Bombay Section Symposium (IBSS) (2016) 1-6.
DOI: https://doi.org/10.1109/IBSS.2016.7940198
Google Scholar
M. Meekyung, Experiments of Search Query Performance for SQL-Based Open Source Databases, International Journal of Internet, Broadcasting and Communication 10 (2018) 31-38.
Google Scholar
R. Almeida, P. Furtado, J. Bernardino, Performance Evaluation MySQL InnoDB and Microsoft SQL Server 2012 for Decision Support Environments, Proceedings of the Eighth International C* Conference on Computer Science & Software Engineering (2015) 56 62.
Google Scholar
Generator makiet danych „Mockaroo”, https://www.mockaroo.com, [10.05.2023].
Google Scholar
W. H. Kruskal, W. A. Wallis, Use of Ranks in One Criterion Variance Analysis, Journal of the American Statistical Association 47 (1952) 583-621.
DOI: https://doi.org/10.1080/01621459.1952.10483441
Google Scholar
Internetowy kalkulator testów statystycznych „Online Web Statistical Calculators ..... for Categorical Data Analysis”, https://astatsa.com/KruskalWallisTest/, [13.06.2023].
Google Scholar
O. J. Dunn, Multiple Comparisons Using Rank Sums, Technometrics 6 (1964) 241-252.
DOI: https://doi.org/10.1080/00401706.1964.10490181
Google Scholar
Statistics
Abstract views: 155PDF downloads: 195
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.