The comparative performance analysis of selected relational database systems
Article Sidebar
Open full text
Issue Vol. 28 (2023)
-
The Examination of SQL Queries Efficiency in Chosen IT System
Krzysztof Barczak186-189
-
Comparative analysis of selected databases on the example of a proprietary web application
Łukasz Przychodzień, Dominika Radwan, Grzegorz Kozieł190-196
-
Performance optimization of web applications using Qwik
Adam Lipiński, Beata Pańczyk197-203
-
Analyze the effectiveness of ETL processes implemented using SQL and Apache HiveQL languages
Krzysztof Litka204-209
-
A comparative analysis of the performance of the relational database and the Hadoop environment in the context of analytical data processing
Michał Zadrąg210-216
-
Performance comparison of Flutter platform GUI in web and native environments
Juliusz Piskor, Marcin Badurowicz217-222
-
Usability analysis of banking service interfaces in Poland
Paulina Sułek, Aleksandra Walaszek223-228
-
Comparative analysis of selected tools for test automation of web applications
Analiza porównawcza wybranych narzędzi do automatyzacji testów aplikacji webowychMichał Pojęta, Franciszek Wąsik, Małgorzata Plechawska-Wójcik229-235 -
Comparative analysis of methods for testing web applications
Wojciech Superson, Tomasz Smyk, Małgorzata Plechawska-Wójcik236-241
-
Performance comparison of microservices written using reactive and imperative approaches
Kacper Mochniej, Marcin Badurowicz242-247
-
Comparative analysis of live sports streaming services
Emilia Skiba248-255
-
Comparative analysis of Angular and React development frameworks
Sylwester Skrzypiec, Małgorzata Plechawska-Wójcik256-263
-
Performance analysis of databases created in virtualized and containerized environment
Zygmunt Łata, Maria Skublewska-Paszkowska264-272
-
A comparative analysis of non-relational databases in e-commerce applications
Kacper Saweczko, Grzegorz Rożek, Małgorzata Plechawska-Wójcik273-278
-
Analysis of how universal design principles impact on the perception of virtual museum interfaces
Dawid Nicpoń, Weronika Wach, Maria Skublewska-Paszkowska279-284
-
An accessibility analysis of websites of selected types of universities
Maciej Banaszak, Mariusz Dzieńkowski285-290
-
Impact of changes in graphics setting on performance in selected video games
Kamil Szafran, Małgorzata Plechawska-Wójcik291-295
-
The comparative performance analysis of selected relational database systems
Szymon Schab296-303
Main Article Content
DOI
Authors
Abstract
The objective of this study was to carry out a performance analysis of the following database systems: MySQL, PostgreSQL and Microsoft SQL Server. For this purpose scripts were used to measure execution times of selecting, updating and inserting data. Furthermore, three data sets were utilized consisting of 100, 1000 and 10000 rows. The experiment included nine cases depending on the query type and the data set. For each case, thirty five test trials were conducted while first five trials were ignored i.a. because of cache storage. The statistical test was performed for the results and the trials in which the DBMS achieved best times were counted. For each case best systems were acknowledged and the most efficient system of the experiment was determined along with systems for each operation type.
Keywords:
References
M. Grudzień, K. Korgol, D. Gutek, Porównanie możliwości wykorzystania oraz analiza wydajności baz danych na systemach mobilnych, praca magisterska, Politechnika Lubelska, Lublin, 2016. DOI: https://doi.org/10.35784/jcsi.129
R. Kleweka, W. Truskowski, M. Skublewska-Paszkowska, Porównanie wydajności baz danych MySQL, MSSQL, PostgreSQL oraz Oracle z uwzględnieniem wirtualizacji, praca magisterska, Politechnika Lubelska, Lublin, 2020.
K. Lachewicz, Analiza wydajności systemów bazodanowych: MySQL, MS SQL, PostgreSQL w kontekście aplikacji internetowych, praca magisterska, Politechnika Lubelska, Lublin, 2020.
S. Stets, G. Kozieł, Analiza porównawcza wydajności baz danych pracujących pod kontrolą systemu Windows, praca magisterska, Politechnika Lubelska, Lublin, 2019.
S. Kulshrestha, S. Sachdeva, Performance comparison for data storage - Db4o and MySQL databases, 2014 Seventh International Conference on Contemporary Computing (IC3) (2014) 166-170. DOI: https://doi.org/10.1109/IC3.2014.6897167
R. Poljak, P. Pošcić, D. Jakšić, Comparative Analysis of the Selected Relational Database Management Systems, 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2017) 1496-1500. DOI: https://doi.org/10.23919/MIPRO.2017.7973658
R. Kleweka, W. Truskowski, M. Skublewska-Paszkowska, Porównanie wydajności baz danych MySQL, MSSQL, PostgreSQL oraz Oracle z uwzględnieniem wirtualizacji, Journal of Computer Sciences Institute 16 (2020) 279-284. DOI: https://doi.org/10.35784/jcsi.2026
Y. Abubakar, Benchmarking popular open source RDBMS: a performance evaluation for IT professionals, International Journal of Advanced Computer Technology (IJACT) 3 (2014) 39-44.
S. Tongkaw, A. Tongkaw, A comparison of database performance of MariaDB and MySQL with OLTP workload, 2016 IEEE Conference on Open Systems (ICOS) (2016) 117-119. DOI: https://doi.org/10.1109/ICOS.2016.7881999
M. -G. Jung, S. -A. Youn, J. Bae, Y. -L. Choi, A Study on Data Input and Output Performance Comparison of MongoDB and PostgreSQL in the Big Data Environment, 2015 8th International Conference on Database Theory and Application (DTA) (2015) 14-17. DOI: https://doi.org/10.1109/DTA.2015.14
M. M. Eyada, W. Saber, M. M. El Genidy, F. Amer, Performance Evaluation of IoT Data Management Using MongoDB Versus MySQL Databases in Different Cloud Environments, IEEE Access 8 (2020) 110656-110668. DOI: https://doi.org/10.1109/ACCESS.2020.3002164
H. Fatima, K. Wasnik, Comparison of SQL, NoSQL and NewSQL databases for internet of things, 2016 IEEE Bombay Section Symposium (IBSS) (2016) 1-6. DOI: https://doi.org/10.1109/IBSS.2016.7940198
M. Meekyung, Experiments of Search Query Performance for SQL-Based Open Source Databases, International Journal of Internet, Broadcasting and Communication 10 (2018) 31-38.
R. Almeida, P. Furtado, J. Bernardino, Performance Evaluation MySQL InnoDB and Microsoft SQL Server 2012 for Decision Support Environments, Proceedings of the Eighth International C* Conference on Computer Science & Software Engineering (2015) 56 62.
Generator makiet danych „Mockaroo”, https://www.mockaroo.com, [10.05.2023].
W. H. Kruskal, W. A. Wallis, Use of Ranks in One Criterion Variance Analysis, Journal of the American Statistical Association 47 (1952) 583-621. DOI: https://doi.org/10.1080/01621459.1952.10483441
Internetowy kalkulator testów statystycznych „Online Web Statistical Calculators ..... for Categorical Data Analysis”, https://astatsa.com/KruskalWallisTest/, [13.06.2023].
O. J. Dunn, Multiple Comparisons Using Rank Sums, Technometrics 6 (1964) 241-252. DOI: https://doi.org/10.1080/00401706.1964.10490181
Article Details
Abstract views: 416
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
